3D Gaussian Splatting源码解剖:实时神经渲染的突破点

​点击 “AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠。


从百万级点云到实时高清渲染,3DGS如何通过显式优化与GPU并行化打破NeRF的算力枷锁?

一、核心架构:显式表示与梯度优化的融合

传统神经渲染方法(如NeRF)依赖隐式神经场表示,导致训练耗时长达数小时渲染速度仅每秒数帧。3D Gaussian Splatting(3DGS)的突破性在于采用显式结构化表示梯度优化的融合架构,其核心源码实现包含以下关键组件:

1.1 高斯参数化与存储结构

gaussian_model.py中,高斯属性以张量形式存储:

class GaussianModel:
    def __init__(self):
        self._xyz = torch.empty(0)  # 位置坐标 [N, 3]
        self._scaling = torch.empty(0)  # 缩放因子 [N, 3]
        self._rotation = torch.empty(0)  # 旋转四元数 [N, 4]
        self._opacity = torch.empty(0)  # 不透明度 [N, 1]
        self._features = torch.empty(0)  # 球谐系数 [N, 16, 3]

这种设计实现参数的高效访问,避免传统隐式场的前向传播计算。

1.2 自适应密度控制(Adaptive Density Control)

optimizer.py中的核心优化循环:

for iteration in range(iterations):
    # 1. 渲染图像并计算损失
    rendered_image = render(gaussians, camera)
    loss = (rendered_image - gt_image).abs().mean()
    
    # 2. 反向传播更新高斯参数
    loss.backward()
    optimizer.step()
    
    # 3. 每1000迭代执行密度控制
    if iteration % 1000 == 0:
        gaussians.adjust_density(grad_threshold=0.0002)

密度控制模块通过梯度分析动态触发分裂(split)克隆(clone)剪枝(prune) 操作,实现场景表示的精准优化。


二、自适应密度控制:梯度驱动的动态优化

传统点云方法依赖固定启发式规则,而3DGS通过梯度反馈动态调整高斯分布,源码中体现为三类操作:

2.1 分裂与克隆的条件判断

density_control.py中,梯度幅值触发分裂:

def should_split(gaussian, grad_threshold):
    position_grad = gaussian.xyz.grad.norm(dim=1)
    scale_grad = gaussian.scaling.grad.norm(dim=1)
    # 位置梯度大且尺度大 → 分裂
    if (position_grad > grad_threshold) and (gaussian.scaling.max() > split_threshold):
        return SPLIT
    # 位置梯度大但尺度小 → 克隆
    elif (position_grad > grad_threshold) and (gaussian.scaling.max() <= clone_threshold):
        return CLONE

该机制确保高斯元在高梯度区域分裂以捕捉细节,在低梯度区域克隆以维持覆盖。

2.2 基于KL散度的合并优化

GauHuman项目(gauhuman/merging.py)引入KL散度解决冗余问题:

def merge_gaussians(gaussian1, gaussian2):
    # 计算分布相似性
    kl_div = compute_kl(gaussian1, gaussian2)
    if kl_div < merge_threshold:  # 相似则合并
        new_mean = (gaussian1.xyz + gaussian2.xyz) / 2
        new_cov = (gaussian1.covariance + gaussian2.covariance) / 2
        return Gaussian(new_mean, new_cov)

此操作减少30%冗余高斯元,存储降至3.5MB/场景

2.3 人体先验引导的剪枝

GauHuman利用SMPL模型剪枝无关高斯:

prune_mask = torch.norm(gaussians.xyz - smpl_vertices, dim=1) > prune_radius
gaussians.remove(prune_mask)  # 移除远离人体的高斯

结合KL约束,实现13k高斯元高效建模人体。


三、可微分渲染管线:GPU并行化实现

渲染速度是3DGS的核心优势,其CUDA内核(rasterizer.cu)通过三级并行实现200+ FPS

3.1 分块光栅化流程
__global__ void render_tile(
    const Gaussian* gaussians, 
    float* image, 
    int tile_x, int tile_y) {
    
    // 1. 筛选与当前tile相交的高斯
    for (int i = threadIdx.x; i < num_gaussians; i += blockDim.x) {
        if (tile_intersects(gaussians[i], tile_x, tile_y)) {
            tile_gaussians[atomicAdd(&count, 1)] = i;
        }
    }
    __syncthreads();
    
    // 2. 按深度排序
    sort_gaussians_by_depth(tile_gaussians, count);
    
    // 3. Alpha混合计算
    for (int i = 0; i < count; i++) {
        splat_gaussian(gaussians[tile_gaussians[i]], image);
    }
}

每个CUDA线程块处理一个16×16像素块,避免全局排序开销。

3.2 基于球谐系数的光照计算

sh_eval.cu中实时计算光照:

float3 eval_sh(int degree, float3 dir, float* coeffs) {
    float3 result = {0, 0, 0};
    for (int l=0; l<=degree; ++l) {
        for (int m=-l; m<=l; ++m) {
            float basis = sh_basis(l, m, dir); // 球谐基函数
            result += coeffs[sh_index(l, m)] * basis;
        }
    }
    return result;
}

支持动态光照变化,无需预烘焙纹理。


四、动态场景建模:形变场与几何感知

静态3DGS无法处理动态物体,扩展方案通过形变场实现运动建模:

4.1 可变形高斯溅射(GaGS)

deformable_gs.py中融合几何特征:

class DeformableGaussianModel(GaussianModel):
    def apply_deformation(self, time):
        # 提取时间相关的几何特征
        geometry_feat = self.geometry_encoder(self._xyz, time)
        # 预测位移场
        delta_xyz = self.deform_net(geometry_feat)
        return self._xyz + delta_xyz

显式几何约束减少运动模糊,提升动态重建精度15%。

4.2 人体姿态纠正(GauHuman)

pose_correction_module.py解决SMPL先验偏差:

def correct_pose(smpl_pose, observed_joints):
    # 学习残差位移
    pose_residual = mlp(smpl_pose - observed_joints)
    corrected_pose = smpl_pose + pose_residual
    return corrected_pose

结合LBS变换实现关节运动精确建模


五、高效存储与量化策略

原始3DGS需700MB+存储,工业部署需压缩技术:

5.1 球谐系数压缩(SG-Splatting)

compression.py中采用球面高斯近似:

def compress_sh(sh_coeffs):
    # 原始球谐系数 [16, 3] → 球面高斯 [4, 3]
    bases = compute_spherical_gaussians_bases()
    proj_coeffs = project_to_bases(sh_coeffs, bases)
    return proj_coeffs  # 存储降维67%

在保持视觉质量同时减少存储开销。

5.2 低秩矩阵分解(SteepGS)

SteepGS项目(src/compression.py)分解协方差矩阵:

def low_rank_covariance(cov):
    U, S, V = torch.svd(cov)
    # 仅保留前2个奇异值
    rank2_cov = U[:, :2] @ torch.diag(S[:2]) @ V[:, :2].T
    return rank2_cov  # 存储需求减半

配合最陡密度控制,实现50%高斯点削减且PSNR损失<0.1dB。


六、工业级部署实战

6.1 环境配置要点

Ubuntu环境需满足:

  • CUDA 11.8+:避免已知兼容问题
  • gcc-9与CMake 3.25:确保C++17支持
  • 特定版本库:Eigen 3.4.0、OpenCV 4.9.0
6.2 训练与可视化
# 数据准备(需COLMAP位姿)
python convert.py -s /path/to/images
# 启动训练(Truck场景示例)
python train.py -s data/truck/ -m output --iterations 30000
# 实时可视化
./SIBR_viewers/bin/SIBR_gaussianViewer_app -m output

单场景训练约30分钟(RTX 4090)。


七、性能对比与未来方向

表:主流神经渲染方案性能对比(1080p分辨率)

方法训练时间渲染速度存储/场景PSNR
NeRF48小时0.2 FPS5 MB25.8 dB
Instant-NGP5分钟15 FPS130 MB26.1 dB
3DGS (原始)30分钟240 FPS734 MB27.0 dB
GauHuman2分钟189 FPS3.5 MB29.2 dB
未来挑战
  1. 动态拓扑变化:衣物皱褶等细节重建仍不理想
  2. Mesh提取:缺乏从高斯到网格的鲁棒转换方法
  3. 跨场景泛化:需大规模预训练提升泛化性
创新方向
  • 物理仿真融合:引入布料模拟增强衣物细节
  • 生成式建模:HumanGaussian实现文本→3D人体生成
  • 传感器集成:RGB-D数据提升深度估计精度

3DGS的突破不仅在于速度,更在于打开了显式优化与隐式表示融合的新范式。当每一帧渲染都在毫秒间完成,我们离实时数字孪生的未来又近一步。

源码资源

  1. 原始3DGS实现
  2. GauHuman人体重建
  3. SteepGS高效压缩

参考文献

  1. Kerbl et al. 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023
  2. Hu et al. GauHuman: Articulated Gaussian Splatting from Monocular Videos, arXiv 2023
  3. Wang et al. Steepest Descent Density Control for Compact 3DGS, CVPR 2025
  4. Liu et al. HumanGaussian: Text-Driven 3D Human Generation, arXiv 2023
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值