点击 “AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠。
从百万级点云到实时高清渲染,3DGS如何通过显式优化与GPU并行化打破NeRF的算力枷锁?
一、核心架构:显式表示与梯度优化的融合
传统神经渲染方法(如NeRF)依赖隐式神经场表示,导致训练耗时长达数小时、渲染速度仅每秒数帧。3D Gaussian Splatting(3DGS)的突破性在于采用显式结构化表示与梯度优化的融合架构,其核心源码实现包含以下关键组件:
1.1 高斯参数化与存储结构
在gaussian_model.py
中,高斯属性以张量形式存储:
class GaussianModel:
def __init__(self):
self._xyz = torch.empty(0) # 位置坐标 [N, 3]
self._scaling = torch.empty(0) # 缩放因子 [N, 3]
self._rotation = torch.empty(0) # 旋转四元数 [N, 4]
self._opacity = torch.empty(0) # 不透明度 [N, 1]
self._features = torch.empty(0) # 球谐系数 [N, 16, 3]
这种设计实现参数的高效访问,避免传统隐式场的前向传播计算。
1.2 自适应密度控制(Adaptive Density Control)
在optimizer.py
中的核心优化循环:
for iteration in range(iterations):
# 1. 渲染图像并计算损失
rendered_image = render(gaussians, camera)
loss = (rendered_image - gt_image).abs().mean()
# 2. 反向传播更新高斯参数
loss.backward()
optimizer.step()
# 3. 每1000迭代执行密度控制
if iteration % 1000 == 0:
gaussians.adjust_density(grad_threshold=0.0002)
密度控制模块通过梯度分析动态触发分裂(split)、克隆(clone) 与剪枝(prune) 操作,实现场景表示的精准优化。
二、自适应密度控制:梯度驱动的动态优化
传统点云方法依赖固定启发式规则,而3DGS通过梯度反馈动态调整高斯分布,源码中体现为三类操作:
2.1 分裂与克隆的条件判断
在density_control.py
中,梯度幅值触发分裂:
def should_split(gaussian, grad_threshold):
position_grad = gaussian.xyz.grad.norm(dim=1)
scale_grad = gaussian.scaling.grad.norm(dim=1)
# 位置梯度大且尺度大 → 分裂
if (position_grad > grad_threshold) and (gaussian.scaling.max() > split_threshold):
return SPLIT
# 位置梯度大但尺度小 → 克隆
elif (position_grad > grad_threshold) and (gaussian.scaling.max() <= clone_threshold):
return CLONE
该机制确保高斯元在高梯度区域分裂以捕捉细节,在低梯度区域克隆以维持覆盖。
2.2 基于KL散度的合并优化
GauHuman项目(gauhuman/merging.py
)引入KL散度解决冗余问题:
def merge_gaussians(gaussian1, gaussian2):
# 计算分布相似性
kl_div = compute_kl(gaussian1, gaussian2)
if kl_div < merge_threshold: # 相似则合并
new_mean = (gaussian1.xyz + gaussian2.xyz) / 2
new_cov = (gaussian1.covariance + gaussian2.covariance) / 2
return Gaussian(new_mean, new_cov)
此操作减少30%冗余高斯元,存储降至3.5MB/场景。
2.3 人体先验引导的剪枝
GauHuman利用SMPL模型剪枝无关高斯:
prune_mask = torch.norm(gaussians.xyz - smpl_vertices, dim=1) > prune_radius
gaussians.remove(prune_mask) # 移除远离人体的高斯
结合KL约束,实现13k高斯元高效建模人体。
三、可微分渲染管线:GPU并行化实现
渲染速度是3DGS的核心优势,其CUDA内核(rasterizer.cu
)通过三级并行实现200+ FPS:
3.1 分块光栅化流程
__global__ void render_tile(
const Gaussian* gaussians,
float* image,
int tile_x, int tile_y) {
// 1. 筛选与当前tile相交的高斯
for (int i = threadIdx.x; i < num_gaussians; i += blockDim.x) {
if (tile_intersects(gaussians[i], tile_x, tile_y)) {
tile_gaussians[atomicAdd(&count, 1)] = i;
}
}
__syncthreads();
// 2. 按深度排序
sort_gaussians_by_depth(tile_gaussians, count);
// 3. Alpha混合计算
for (int i = 0; i < count; i++) {
splat_gaussian(gaussians[tile_gaussians[i]], image);
}
}
每个CUDA线程块处理一个16×16像素块,避免全局排序开销。
3.2 基于球谐系数的光照计算
sh_eval.cu
中实时计算光照:
float3 eval_sh(int degree, float3 dir, float* coeffs) {
float3 result = {0, 0, 0};
for (int l=0; l<=degree; ++l) {
for (int m=-l; m<=l; ++m) {
float basis = sh_basis(l, m, dir); // 球谐基函数
result += coeffs[sh_index(l, m)] * basis;
}
}
return result;
}
支持动态光照变化,无需预烘焙纹理。
四、动态场景建模:形变场与几何感知
静态3DGS无法处理动态物体,扩展方案通过形变场实现运动建模:
4.1 可变形高斯溅射(GaGS)
在deformable_gs.py
中融合几何特征:
class DeformableGaussianModel(GaussianModel):
def apply_deformation(self, time):
# 提取时间相关的几何特征
geometry_feat = self.geometry_encoder(self._xyz, time)
# 预测位移场
delta_xyz = self.deform_net(geometry_feat)
return self._xyz + delta_xyz
显式几何约束减少运动模糊,提升动态重建精度15%。
4.2 人体姿态纠正(GauHuman)
pose_correction_module.py
解决SMPL先验偏差:
def correct_pose(smpl_pose, observed_joints):
# 学习残差位移
pose_residual = mlp(smpl_pose - observed_joints)
corrected_pose = smpl_pose + pose_residual
return corrected_pose
结合LBS变换实现关节运动精确建模。
五、高效存储与量化策略
原始3DGS需700MB+存储,工业部署需压缩技术:
5.1 球谐系数压缩(SG-Splatting)
compression.py
中采用球面高斯近似:
def compress_sh(sh_coeffs):
# 原始球谐系数 [16, 3] → 球面高斯 [4, 3]
bases = compute_spherical_gaussians_bases()
proj_coeffs = project_to_bases(sh_coeffs, bases)
return proj_coeffs # 存储降维67%
在保持视觉质量同时减少存储开销。
5.2 低秩矩阵分解(SteepGS)
SteepGS项目(src/compression.py
)分解协方差矩阵:
def low_rank_covariance(cov):
U, S, V = torch.svd(cov)
# 仅保留前2个奇异值
rank2_cov = U[:, :2] @ torch.diag(S[:2]) @ V[:, :2].T
return rank2_cov # 存储需求减半
配合最陡密度控制,实现50%高斯点削减且PSNR损失<0.1dB。
六、工业级部署实战
6.1 环境配置要点
Ubuntu环境需满足:
- CUDA 11.8+:避免已知兼容问题
- gcc-9与CMake 3.25:确保C++17支持
- 特定版本库:Eigen 3.4.0、OpenCV 4.9.0
6.2 训练与可视化
# 数据准备(需COLMAP位姿)
python convert.py -s /path/to/images
# 启动训练(Truck场景示例)
python train.py -s data/truck/ -m output --iterations 30000
# 实时可视化
./SIBR_viewers/bin/SIBR_gaussianViewer_app -m output
单场景训练约30分钟(RTX 4090)。
七、性能对比与未来方向
表:主流神经渲染方案性能对比(1080p分辨率)
方法 | 训练时间 | 渲染速度 | 存储/场景 | PSNR |
---|---|---|---|---|
NeRF | 48小时 | 0.2 FPS | 5 MB | 25.8 dB |
Instant-NGP | 5分钟 | 15 FPS | 130 MB | 26.1 dB |
3DGS (原始) | 30分钟 | 240 FPS | 734 MB | 27.0 dB |
GauHuman | 2分钟 | 189 FPS | 3.5 MB | 29.2 dB |
未来挑战
- 动态拓扑变化:衣物皱褶等细节重建仍不理想
- Mesh提取:缺乏从高斯到网格的鲁棒转换方法
- 跨场景泛化:需大规模预训练提升泛化性
创新方向
- 物理仿真融合:引入布料模拟增强衣物细节
- 生成式建模:HumanGaussian实现文本→3D人体生成
- 传感器集成:RGB-D数据提升深度估计精度
3DGS的突破不仅在于速度,更在于打开了显式优化与隐式表示融合的新范式。当每一帧渲染都在毫秒间完成,我们离实时数字孪生的未来又近一步。
源码资源:
参考文献:
- Kerbl et al. 3D Gaussian Splatting for Real-Time Radiance Field Rendering, SIGGRAPH 2023
- Hu et al. GauHuman: Articulated Gaussian Splatting from Monocular Videos, arXiv 2023
- Wang et al. Steepest Descent Density Control for Compact 3DGS, CVPR 2025
- Liu et al. HumanGaussian: Text-Driven 3D Human Generation, arXiv 2023