前言
DeepResearch,已经成为了所有人的共识。
最近浙江大学,一篇长达80页、引用300多篇文献的综述论文《A Comprehensive Survey of Deep Research》。系统性地梳理了这个赛道。
DeepResearch不仅代表了一个新的产品方向,背后的Agent的范式,可以迁移到各个场景。
今天我们详细来看下 DeepResearch 技术背后的技术与未来。
到底什么是 Deep Research?
Deep Research 不是一个具体的产品,而是一类 AI 系统。
这类系统通过整合大模型、高级信息检索和自主推理能力,来自动化完成复杂的研究工作流。
说人话,它就是一个“AI研究助理”,但比我们熟知的大模型又强得多:
- 区别于 ChatGPT 这类通用助手: 通用助手是被动回答,你问一句它答一句。Deep Research 拥有自主的工作流能力,能主动规划、使用工具、端到端地完成一个研究任务。
- 区别于单一功能工具: 像文献管理、数据分析这类工具只能解决单个环节的问题。Deep Research 则是将文献搜索、数据收集、分析、报告生成等全流程打通并自动化。
- 区别于简单的 LLM 应用: 它不是简单Prompt套个壳,而是具备与外部环境(如浏览器)交互、集成并调用多种工具的核心能力。
Deep Research进化史
这篇论文将它的发展划分为了三个阶段,一线大厂悉数入局。
-
第一阶段 (2023 - 2025.02): 起源与探索
-
- 这个阶段的标志是 Google Gemini 在 2024 年底率先推出 Deep Research 功能,主打多步推理和知识整合。像 AutoGPT、BabyAGI 等早期 Agent 框架也为这个阶段奠定了基础。
-
第二阶段 (2025.02 - 2025.03): 技术突破与神仙打架
-
- 战况升级!2025年2月,OpenAI 发布了基于其
o3
模型的 Deep Research,在自主规划、跨域分析和报告质量上都实现了巨大飞跃。 - 几乎同时,Perplexity 也推出了免费的 Deep Research,主打快速响应和易用性,抢占大众市场。
- 开源社区也没闲着,GPT-Researcher、OpenDeepResearcher 等项目纷纷涌现。
- 战况升级!2025年2月,OpenAI 发布了基于其
-
第三阶段 (2025.03 - 至今): 生态扩张与多模态
-
- 赛道进入生态成熟期。大厂们开始卷多模态、多智能体协作。同时,像 Manus、AutoGLM 等平台也开始集成先进的 AI 研究能力,整个生态变得异常繁荣。
技术拆解
一个强大的 Deep Research 系统是如何构建的?论文提出了一个非常经典的分层技术框架,包含四大核心能力。
一、大脑
所有能力的基石。“大脑” 决定了研究的深度和质量。从通用大模型发展到专用研究模型 (OpenAI o3),再到具备超长上下文 (Gemini 2.5 Pro 的百万token) 和高级推理能力 (思维树、自我批判),这是系统智能的源头。
二、手脚
“手脚”可以获取信息和执行任务。这包括了能操作复杂网页的专用浏览器 (Nanobrowser
),能解析 PDF、图表的多格式内容处理器,以及能集成成千上万真实世界 API 的工具框架 (ToolLLM
, Manus
)。
三、蓝图
面对复杂研究课题,系统需要强大的 规划与控制 能力。将大目标分解为子任务的层级规划 (OpenAI Agents SDK
),能从失败中学习并自我恢复的自主执行 (Agent-RL/ReSearch
),以及模拟人类团队的多智能体协作 (smolagents
, TARS
)。
四、报告
价值最终体现的一步。它包括了评估信源可靠性、检测矛盾观点的信息评估 (grapeot
),生成结构化、图文并茂、引用规范的深度报告 (mshumer/OpenDeepResearcher
),以及允许用户下钻探索、交互分析的呈现方式 (HKUDS/Auto-Deep-Research
)。
四大架构模式
当前系统主流的四种架构模式。
-
单体架构 (Monolithic): 所有功能模块都紧密围绕一个核心推理引擎。优点是逻辑连贯、控制力强,但扩展性差。OpenAI/DeepResearch 就是典型代表。
-
流水线架构 (Pipeline-Based): 将研究工作流分解成一系列独立的、顺序的处理阶段(如查询、检索、分析、生成)。优点是模块化、易于定制,但处理需要反复迭代的复杂推理时比较吃力。
n8n
和dzhng/deep-research
是这种模式的例子。 -
多智能体架构 (Multi-Agent): 将研究能力分散到多个拥有不同角色的自主 Agent(如搜索、分析、批判、写作等),通过协作完成任务。优点是擅长处理复杂问题和并行处理,但保持整体一致性是个挑战。
smolagents
和TARS
采用了这种架构。 -
混合架构 (Hybrid): 结合多种架构的优点,例如用单体核心处理复杂推理,用多智能体子系统进行并行信息收集。这种架构非常灵活,但实现起来也最复杂。Perplexity 和
Camel-AI/OWL
是这种模式的代表。
主流系统性能比拼
这些系统在标准测试集上的表现如何?
论文汇总了多个关键基准测试(Benchmark)的结果。
HLE (Humanity's Last Exam)
: 考察前沿研究能力。GAIA
: 考察通用AI助手任务能力,需要工具使用、多步推理。MMLU (Massive Multitask Language Understanding)
: 考察通用知识。HotpotQA
: 考察多跳问答和推理能力。
这些数据目前来看滞后了。不需要太关注。
现在看的比较多的就是HLE、GAIA了。后者被很多通用智能体来刷榜,前者是个非常难的Benchmark,可以看系统的整体能力。
除了分数,报告的质量也很关键。OpenAI 的报告以结构化和深度著称,而 Perplexity 则在引用归属和信息源多样性上做得很好。
应用落地:Deep Research 究竟能干什么?
它正在快速渗透到各个领域。
- 学术研究: 这是它的主场。从自动化完成系统性文献综述(分析数千篇论文),到识别研究空白和辅助生成假说,再到促进跨学科研究,它正在成为科研人员的得力助手。
- 商业智能: 企业用它来做市场研究和竞品分析,能够整合财报、新闻、产品公告等海量信息,快速输出战略洞察。
- 金融分析: 投资研究、尽职调查、风险评估等都可以被赋能。系统能够整合财务指标、市场动态和宏观政策,进行多维度分析。
- 教育: 可以为学生生成个性化的学习路径,开发多模态的教学材料,甚至可以用来进行研究方法的训练。
- 个人知识管理: 它可以帮你把散落在各处的信息自动整理成结构化的个人知识库,并根据你的兴趣进行深度探索。
挑战与未来:不止于工具
尽管 Deep Research 已经展现出强大的能力,但依然充满挑战。
核心挑战: 如何控制模型"幻觉"保证事实准确性、如何保护用户数据隐私、如何清晰地进行信源和知识产权归属、以及如何避免技术鸿沟。
论文最后提到了几个脑洞大开的未来方向:
- 更强的推理架构: 例如,结合符号推理与神经网络,让 AI 具备更强的因果推断能力。
- 真正的多模态研究: 不仅是看懂图表,而是能深度理解和分析科学图像、视频、音频等内容。
- 领域深度优化: 针对特定领域(如法律、医疗、金融)训练专用模型,提供专家级的分析能力。
- 人机协同与标准化: 建立统一的 Agent 通信协议和任务框架,并设计更高效的人机协作流程。
最后
为什么要学AI大模型
当下,⼈⼯智能市场迎来了爆发期,并逐渐进⼊以⼈⼯通⽤智能(AGI)为主导的新时代。企业纷纷官宣“ AI+ ”战略,为新兴技术⼈才创造丰富的就业机会,⼈才缺⼝将达 400 万!
DeepSeek问世以来,生成式AI和大模型技术爆发式增长,让很多岗位重新成了炙手可热的新星,岗位薪资远超很多后端岗位,在程序员中稳居前列。
与此同时AI与各行各业深度融合,飞速发展,成为炙手可热的新风口,企业非常需要了解AI、懂AI、会用AI的员工,纷纷开出高薪招聘AI大模型相关岗位。
最近很多程序员朋友都已经学习或者准备学习 AI 大模型,后台也经常会有小伙伴咨询学习路线和学习资料,我特别拜托北京清华大学学士和美国加州理工学院博士学位的鲁为民老师给大家这里给大家准备了一份涵盖了AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频 全系列的学习资料,这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

AI大模型系统学习路线
在面对AI大模型开发领域的复杂与深入,精准学习显得尤为重要。一份系统的技术路线图,不仅能够帮助开发者清晰地了解从入门到精通所需掌握的知识点,还能提供一条高效、有序的学习路径。
但知道是一回事,做又是另一回事,初学者最常遇到的问题主要是理论知识缺乏、资源和工具的限制、模型理解和调试的复杂性,在这基础上,找到高质量的学习资源,不浪费时间、不走弯路,又是重中之重。
AI大模型入门到实战的视频教程+项目包
看视频学习是一种高效、直观、灵活且富有吸引力的学习方式,可以更直观地展示过程,能有效提升学习兴趣和理解力,是现在获取知识的重要途径
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
海量AI大模型必读的经典书籍(PDF)
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
600+AI大模型报告(实时更新)
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
AI大模型面试真题+答案解析
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
