机器学习算法:从原理到实践(持续更新中...)

本文依据scikit-learn的目录,全面介绍了机器学习算法的原理与应用,包括广义线性模型、支持向量机等,并附有详细的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

@author : duanxxnj@163.com
@first update time : 2016-07-11
@last update time : 2016-08-01

根据scikit-learn的目录,从原理到代码实现,对机器学习算法做说明。

参考书目:
《pattern recognition 4th》
《pattern Classification 2th》
《Pattern Recognition and Machine Learning》
《The Elements of Statistical Learning II》
《统计学习方法》

下面的目录,是完全按照scikit-learn的目录写的,本文章可以说是scikit-learn的一个说明书。中间会有一些章节缺失,大部分章节缺失的原因是因为它们讲的基本上是一个东西,被我合并为了一个章节来说明。

下面的文章中有我个人对相关算法的原理理解、算法适用范围说明,以及详细注释的scikit-learn上的示例代码。

本文章会持续更新。。。

1 监督学习

1.1 广义线性模型

1.1.1 线性回归

1.1.2 脊回归(Ridge Regression)

1.1.3 Lasso Regression

1.1.9 贝叶斯线性回归(Bayesian Linear Regression)

1.1.10 逻辑斯蒂回归(Logistic Regression)

1.1.12 感知机(Perceptron)

1.1.14 稳健回归(Robustness regression)

1.1.15 多项式曲线拟合(Polynomial Curve Fitting)

1.2 线性判别分析

1.2.1 线性判别分析(Linear Discriminant Analysis)

1.4 支持向量机

支持向量机

1.4.1支持向量机 一

1.4.1支持向量机 二

1.4.1支持向量机 三

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值