mmdetection在windows10系统环境中搭建

mmdetection官方并不提供windows版本的稳定安装教程,网上有相关的教程但是并不支持最新的mmdetection版本,这边根据各位大佬的博客总结了以下这篇文章,帮助大家可以在windows10中使用。

环境版本要求:

python=3.6

cuda=10.0

cudnn=7.5.0

pytorch=1.2.0

torchversion=0.4.0

安装软件:

安装vs2017

需要勾选c++环境,给mmdetection编译提供环境

安装cuda10

安装时有关vs的相关选项需要选中

注意:如果是安装cuda9的话不支持最新的1917版本的vs2017,只能支持到1911版本的vs2017,所以可以安装vs2015

安装cudnn7.5.0

将压缩包中所有的文件夹直接复制粘贴到cuda安装目录下即可

安装anaconda

官网下载最新版本默认安装即可,需要提升anaconda文件夹权限为完全控制

安装pycharm

安装gitbash

从github上下载项目以及安装pycocotools都需要用到

下载地址:https://gitforwindows.org/

 

python环境搭建:

以管理员身份运行Anaconda Prompt(windows安装一定要以管理员身份安装,不然有些东西会装不上去,没有权限)

创建python3.6环境:

conda create -n mmdetection python=3.6

(python3.7兼容性不好)

激活环境:

conda activate mmdetection

安装pytorch,window环境下稳定1.2.0版本:

conda install pytorch torchvision cudatoolkit=10.0 -c pytorch

conda国内加速教程:https://segmentfault.com/a/1190000019680625

安装mmcv:

官方下载地址:https://github.com/open-mmlab/mmcv

git clone https://github.com/open-mmlab/mmcv.git
cd mmcv
pip install -e .

会自动安装Cython

安装pycocotools:

是mmdection读取coco数据集必备包

在命令行输入

pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

安装mmdetection:

官方网站:https://github.com/open-mmlab/mmdetection

git clone https://github.com/open-mmlab/mmdetection.git

cd mmdetection

补充安装依赖包requirements:

pip install -r requirements.txt

 

修改编译文件:

1.将~Lib\site-packages\torch\utils\cpp_extension.py 中 info = info.decode().lower()修为 info=info.decode("utf8","ignore").lower()

最好将所有decode() 都改成decode("utf8","ignore")

修改setup.py文件中extra_compile_args 相关代码,增加cxx的:"-DMS_WIN64","-MD"

def make_cuda_ext(name, module, sources):

    return CUDAExtension(
        name='{}.{}'.format(module, name),
        sources=[os.path.join(*module.split('.'), p) for p in sources],
        extra_compile_args={
            'cxx': ["-DMS_WIN64","-MD"],
            'nvcc': [
                '-D__CUDA_NO_HALF_OPERATORS__',
                '-D__CUDA_NO_HALF_CONVERSIONS__',
                '-D__CUDA_NO_HALF2_OPERATORS__',
            ]
        })

2.当前文件夹运行

python setup.py build_ext --inplace 进行编译

python setup.py install develop 完成安装

运行pip list 查看是否安装成功,成功的话会有mmdet包以及对应版本

后续问题:

修改~\Lib\site-packages\mmcv\utils中的config.py文件中的123行的

with open(filename, 'r', encoding='utf-8') as f:

增加encoding='utf-8'

 

到此,在windows10中就可以正常运行mmdetecion框架代码了,之前有遇到focal loss不能正常使用,但是后来安装都是可以的,后续有什么问题欢迎大家提出,谢谢。

 

2020-05-15更新:最新版本变动较大,以下训练方法已经不适用了

2020-01-10更新:

mmdetection在2019年12月13号进行了新版本的更新,其中对api/train.py增加torch.distributed,这块在windows下不支持,所以要在windows中训练的话需要把v1.0rc1的版本的train与新版本的train进行合并,主要是去除torch.distributed以及_non_dist_train的修改为主。

文件见下载。

参考文章:

https://zhuanlan.zhihu.com/p/55789320

<think>好的,用户之前问过在Linux下搭建R-FCN环境,现在转向Windows下的Conda环境搭建。我需要考虑Windows和Linux的区别,特别是依赖管理和编译问题。用户可能对Linux的步骤有一定了解,但Windows下可能遇到不同的挑战,比如Caffe的编译困难,CUDA和cuDNN的配置差异。 首先,用户可能已经尝试过Linux的步骤,但在Windows下需要不同的工具,比如Visual Studio替代GCC。Conda环境可以帮助管理Python依赖,但Caffe在Windows下的支持可能有限,特别是微软的Caffe分支可能更适配,但需要配置。用户可能需要安装CMake、CUDA工具包,确保版本兼容性。 接下来,用户可能需要预训练模型和数据准备,这和Linux步骤类似,但路径可能需要调整。测试环境时,可能会遇到DLL错误或Python包导入问题,需要检查环境变量和PATH是否包含CUDA和Caffe的路径。常见问题可能包括Caffe编译失败、CUDA版本不匹配、Python模块找不到等。用户可能需要使用Docker或WSL作为替代方案,如果直接编译困难。另外,用户可能对PyTorch实现感兴趣,可能更简单,但需要确认是否存在官方支持。 需要强调Windows下的步骤更复杂,特别是Caffe的编译,可能推荐使用Docker或WSL来简化。同时,建议用户参考社区资源或预构建的Docker镜像,以减少配置时间。确保指导用户正确设置环境变量,如CUDA_PATH、Conda环境激活,以及Caffe的Python接口路径。此外,注意Windows的路径分隔符和符号链接问题,可能影响脚本执行。</think>在 Windows 系统下使用 Conda 搭建 R-FCN 环境需要特别注意依赖库的兼容性(尤其是 Caffe 框架的编译)。以下是为 Windows 系统设计的步骤(基于 Conda 环境管理): --- ### **1. 安装 Conda 和基础工具** 1. **下载 Miniconda/Anaconda** 从[官网](https://docs.conda.io/en/latest/miniconda.html)安装 Miniconda(推荐 Python 3.7 版本)。 2. **创建 Conda 环境** ```bash conda create -n rfcn python=3.7 conda activate rfcn ``` 3. **安装基础工具** ```bash conda install -y numpy opencv cython matplotlib scipy pip install easydict pyyaml ``` --- ### **2. 安装 CUDA 和 cuDNN(GPU 用户必选)** - **CUDA Toolkit** 从 [NVIDIA 官网](https://developer.nvidia.com/cuda-toolkit-archive)下载与显卡驱动兼容的 CUDA(如 10.2/11.1),安装时勾选“添加到系统 PATH”。 - **cuDNN** 下载与 CUDA 版本匹配的 cuDNN,解压后将 `bin`、`include`、`lib` 文件夹复制到 CUDA 安装目录(如 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1`)。 --- ### **3. 编译 Caffe(关键难点)** R-FCN 官方依赖的 Caffe 框架在 Windows 下编译复杂,需使用微软维护的 **Windows 分支**: 1. **克隆代码库** ```bash git clone https://github.com/Microsoft/caffe.git cd caffe git checkout windows ``` 2. **修改配置** - 复制 `scripts/build_win.cmd` 为 `build_win.cmd`。 - 编辑 `build_win.cmd`,设置以下参数: ```bash set WITH_NINJA=0 set PYTHON_VERSION=3 set PYTHON_DIR=%CONDA_PREFIX% set CUDA_ARCH_NAME=Auto ``` 3. **编译 Caffe** 在 Anaconda Prompt 中执行: ```bash .\build_win.cmd ``` - 若失败,需手动安装依赖(如 Protobuf、HDF5): ```bash conda install -c conda-forge protobuf hdf5 ``` 4. **添加环境变量** 将编译生成的 `caffe\build\install\python` 添加到 Python 路径: ```bash set PYTHONPATH=%PYTHONPATH%;C:\path\to\caffe\build\install\python ``` --- ### **4. 克隆 R-FCN 代码库** ```bash git clone --recursive https://github.com/daijifeng001/R-FCN.git cd R-FCN # 替换官方 Caffe 为微软分支(若已单独编译 Caffe,可跳过) ``` --- ### **5. 数据准备与预训练模型** 1. **下载预训练模型** 将 ResNet-101 权重文件(如 `resnet101_rfcn_final.caffemodel`)放到 `R-FCN/data` 目录。 2. **准备 VOC 数据集** - 创建目录 `data/VOCdevkit/VOC2007`,按 VOC 格式存放图像和标注。 - 运行脚本生成索引文件: ```bash python data/VOC0712/create_list.py python data/VOC0712/create_data.py ``` --- ### **6. 测试环境** ```bash python tools/demo.py --def model/rfcn_end2end/test_agnostic.prototxt --net data/resnet101_rfcn_final.caffemodel ``` - 若输出检测结果,则环境配置成功。 --- ### **常见问题与解决方案** 1. **Caffe 编译失败** - 确保 Conda 环境已激活,且 `PYTHON_DIR` 指向正确的路径(如 `C:\Miniconda3\envs\rfcn`)。 - 安装 VS Build Tools(Visual Studio 2019,勾选“C++桌面开发”)。 2. **ImportError: DLL not found** - 将 CUDA 的 `bin` 目录(如 `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.1\bin`)添加到系统 PATH。 3. **Python 版本冲突** - 使用 Python 3.6/3.7,避免高版本 Python 的兼容性问题。 --- ### **替代方案(推荐)** 若 Caffe 编译困难,可尝试以下方法: 1. **使用 Docker** 下载预装 Caffe 的 Windows Docker 镜像(如 `caffe:windows`),避免手动编译。 2. **WSL 2 子系统** 在 Windows 中启用 WSL 2,安装 Ubuntu 按照 Linux 步骤配置环境。 3. **PyTorch 实现** 寻找社区维护的 R-FCN PyTorch 版本(如 [mmdetection](https://github.com/open-mmlab/mmdetection)),避免 Caffe 依赖。 --- ### **注意事项** - Windows 路径中避免空格和中文。 - 若使用 CPU 模式,需在 Caffe 编译时设置 `CPU_ONLY=1`,但检测速度会显著下降。 - 参考微软 Caffe 的[官方文档](https://github.com/Microsoft/caffe/wiki/Configure-Caffe-on-Windows)调整细节。
评论 64
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值