怎么预测?

很多人在后台留言说对预测技术很感兴趣,那我就说点基本的普及。

(1)

从技术上来说,分为:

1、机器学习

2、深度学习

3、预训练

(2)

从架构来说:

深度学习分为:

1、MLP架构

2、CNN/RNN架构

3、Transformer架构

4、Mamba架构

预训练模型分为:

1、统一大模型

2、MoE多专家模型

(3)

从任务来说分为:

1、分类

2、聚类

3、预测

4、推理

5、插补

6、异常检测

(4)

从模型可接受的数据能力来说分为:

1、多变量、单变量:如只能接受一个收盘价还是能接受很多因子

2、多序列、单序列:如能多个序列同时输入互相可影响,还是每次只能一个序列

3、多尺度、单一尺度:如只能接受单一日级数据,还是可以同时接受日周月分钟级数据

4、多模态、单模态:如同时能接受新闻文本甚至图片并接受时序数据,还是只能接受单一时序数据

从模型接受的数据集我们也分层去看:

1、如股票数据集:比如中国沪深300成分股、中证500成分股

2、如金融数据集:比如汇率、数字货币

3、如通用数据集:电力、交通、天气

从数据集的使用用途也可分为:

1、测试-验证

2、预训练-微调-后训练-提示模板

从模型的预测能力来说分为:

1、多步预测、单步预测:如一次可生成未来多日预测还是只能预测下一日如此往复

2、点预测、概率分布预测:如一个明确的值还是多个分布区间的值

(5)

预测肯定存在误差,但误差如何科学度量也很有讲究:

1、 MSE(均方误差):适用于误差分布较为均匀且极端值较少的情况,对大误差的惩罚力度较大

2、RMSE(均方根误差):与MSE类似,但其单位和量纲与预测变量相同

3、MAE(平均绝对误差):适用于误差分布中存在较多极端值的情况,对所有误差的惩罚力度相同

4、MASE(平均绝对缩放误差):适用于不同时间尺度、不同量纲的数据,不受数量级影响

5、MAPE(平均绝对百分比误差):适用于目标值非零且需要以百分比形式表示误差的场景

6、DA(方向准确性):适用于需要评估预测值与实际值之间变化方向一致性的场景

预测大多本质是回归原理,有的人解决问题会使用到分类原理(尤其是机器学习/树模型/集成方法),分类常见的评估指标是:

准确率

精确率、召回率、F1

(6)

前沿探索,大家的热点在两个:

1、利用语言大模型的生成能力、新闻内容提示模板来处理时序预测

2、利用语言大模型的深度思考推理能力来处理时序预测

当然,很多人为了发paper在卷时域频域、时间空间,这不是咱们的讨论范围,咱们还是实用、产生实际效果为准。

有人问怎么找学习资料,我告诉大家三个:

1、模型理论:arxiv

2、模型代码:github

3、模型权重:hugging face

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值