很多人在后台留言说对预测技术很感兴趣,那我就说点基本的普及。
(1)
从技术上来说,分为:
1、机器学习
2、深度学习
3、预训练
(2)
从架构来说:
深度学习分为:
1、MLP架构
2、CNN/RNN架构
3、Transformer架构
4、Mamba架构
预训练模型分为:
1、统一大模型
2、MoE多专家模型
(3)
从任务来说分为:
1、分类
2、聚类
3、预测
4、推理
5、插补
6、异常检测
(4)
从模型可接受的数据能力来说分为:
1、多变量、单变量:如只能接受一个收盘价还是能接受很多因子
2、多序列、单序列:如能多个序列同时输入互相可影响,还是每次只能一个序列
3、多尺度、单一尺度:如只能接受单一日级数据,还是可以同时接受日周月分钟级数据
4、多模态、单模态:如同时能接受新闻文本甚至图片并接受时序数据,还是只能接受单一时序数据
从模型接受的数据集我们也分层去看:
1、如股票数据集:比如中国沪深300成分股、中证500成分股
2、如金融数据集:比如汇率、数字货币
3、如通用数据集:电力、交通、天气
从数据集的使用用途也可分为:
1、测试-验证
2、预训练-微调-后训练-提示模板
从模型的预测能力来说分为:
1、多步预测、单步预测:如一次可生成未来多日预测还是只能预测下一日如此往复
2、点预测、概率分布预测:如一个明确的值还是多个分布区间的值
(5)
预测肯定存在误差,但误差如何科学度量也很有讲究:
1、 MSE(均方误差):适用于误差分布较为均匀且极端值较少的情况,对大误差的惩罚力度较大
2、RMSE(均方根误差):与MSE类似,但其单位和量纲与预测变量相同
3、MAE(平均绝对误差):适用于误差分布中存在较多极端值的情况,对所有误差的惩罚力度相同
4、MASE(平均绝对缩放误差):适用于不同时间尺度、不同量纲的数据,不受数量级影响
5、MAPE(平均绝对百分比误差):适用于目标值非零且需要以百分比形式表示误差的场景
6、DA(方向准确性):适用于需要评估预测值与实际值之间变化方向一致性的场景
预测大多本质是回归原理,有的人解决问题会使用到分类原理(尤其是机器学习/树模型/集成方法),分类常见的评估指标是:
准确率
精确率、召回率、F1
(6)
前沿探索,大家的热点在两个:
1、利用语言大模型的生成能力、新闻内容提示模板来处理时序预测
2、利用语言大模型的深度思考推理能力来处理时序预测
当然,很多人为了发paper在卷时域频域、时间空间,这不是咱们的讨论范围,咱们还是实用、产生实际效果为准。
有人问怎么找学习资料,我告诉大家三个:
1、模型理论:arxiv
2、模型代码:github
3、模型权重:hugging face