图像尺寸测量与面部眼镜自动去除技术研究
一、图像尺寸测量技术
1.1 传统测量方法的局限性
在生产生活中,零件尺寸测量是常见且重要的项目。传统的测量工具经历了机械、光学和电气等阶段。进入计算机辅助阶段后,借助计算机视觉和数字图像信息处理技术,形成了图像尺寸测量技术,智能化和自动化程度迅速提高。
传统的接触式测量方法存在诸多局限性:
- 对于小尺寸零件,容易破坏表面并改变相对位置,影响测量精度。
- 对于表面轮廓测量,速度跟不上。
- 对于大规模生产,只能采用抽样检测,可能出现误报。
- 长期工作会导致操作人员疲劳,影响稳定性,恶劣的工作条件还会影响健康和情绪。
1.2 图像尺寸测量技术的优势
图像尺寸测量技术具有实时在线监测的优势,为质量控制提供了可行的方法。目前,提高零件尺寸测量精度仍是机械加工和安装中的重要问题,该技术在现代生产的质量保证和成本控制方面具有重要的研究和应用价值。
1.3 图像尺寸测量系统的组成与处理方法
1.3.1 组合滤波
在图像采集和传输过程中,由于温度、光线和系统本身等因素的影响,图像会受到外界噪声的污染。图像中的噪声通常是多种噪声混合的结果,因此需要使用两种或两种以上的滤波方法组合来滤除噪声。具体步骤如下:
1. 使用中值滤波器去除大的噪声点。
2. 使用均值滤波器平滑图像。
通过这种组合滤波方法,可以有效抑制大部分噪声,获得更高的信噪比和更好的视觉效果。
1.3.2 Otsu阈值分割
Otsu阈值分割是一种自适应阈