
Scikit-learn
Scikit-learn
程序员·小李
不知道要干什么的时候,停一停,想一想;知道想要什么的时候,努努力,拼一拼。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Sci-learn LARS算法进行线性回归
LARS适合这样的应用场景:当特征的个数p远远大于样本个数n时,使用LARS算法。1. 准备数据200个样本,500种特征,10种有效特征2. 导入模型为什么选择较少的特征数?我们分别使用12个特征,与500个特征,同样使用100个数据进行建模:MSE出现很大的差异:这就是过拟合给我们带来的问题。交叉验证使用交...原创 2019-04-21 10:45:22 · 496 阅读 · 0 评论 -
Sci-learn LASSO算法进行线性回归
Lasso通过减少特征的数量,保留核心特征的方法提高训练效果。根据数据的稀疏性进行正则化模型的方法叫做LASSO算法(least absolute shrinkage and selection operator)1. 准备数据2.导入LASSO模型3. 喂入数据我们发现,现在有9个非零参数4. 将参数置为0,等效于LinearRegress...原创 2019-04-21 10:31:51 · 523 阅读 · 0 评论 -
Sci-learn岭回归算法参数优化
岭回归在寻找参数的时候,需要考虑到惩罚项:那么,这里的gamma最好是多少呢?在sklearn中,常常用alpha表示这个参数。Sklearn岭回归参数优化1.生成数据集from sklearn.datasets import make_regressionreg_data, reg_target = make_regression(n_samples = 1...原创 2019-04-18 16:36:32 · 1282 阅读 · 0 评论 -
Sci-learn使用岭回归避免传统线性模型的一些问题
岭回归使用惩罚项压缩参数。不同于传统的线性模型,特别是出现了多个字段具有共线性(比如文字描述长、中、短 与 实际长度20cm,15cm,10cm就存在共线性)。1. 我们使用make_regression方法创建简单的数据集他们的有效秩是2,有效秩是2意味着虽然他们都是满秩矩阵,矩阵的列与列之间存在很强的线性相关性。#导入make_regression方法from ...原创 2019-04-18 16:02:03 · 490 阅读 · 0 评论 -
Sci-learn线性模型的评估
上文中我们使用LinearRegression方法进行训练及预测,方法不算复杂,先创建回归对象并喂入数据,创建模型后使用predict进行预测。Sci-learn线性模型的评估1.导入所需的包#导入绘图包及numpy包import matplotlib.pyplot as pltimport numpy as np2. 绘制残差直方图#绘制坐标图f...原创 2019-04-18 14:41:36 · 629 阅读 · 0 评论 -
Sci-learn处理线性模型问题
使用数据构建一条直线(线性回归)1. 加载数据集#导入datasets模块,加载波士顿房价数据from sklearn import datasetsboston = datasets.load_boston()2. 导入线性回归模型from sklearn.linear_model import LinearRegressionlr = LinearRe...原创 2019-04-18 14:09:38 · 477 阅读 · 0 评论