论文地址:Variztional Inference with Normalizing Flows
本文主要是关于现在特别的火的流模型的原理介绍,具体来说是关于标准化流(Normalizing FLows)的介绍
一、论文记录
1、在摘要中提出在变分推断中选择一个合适的后验分布是十分重要的。在这涉及到两个概念:后验分布(posterior distribution)和变分推断(variational inference),这两个概念已经接触好多次,但还是模模糊糊的,所以在这整理一下。
先验分布(prior distribution)和后验分布(posterior distribution)
我们通常把一次试验中的结果称为随机变量,随机变量为每一个可能出现结果赋予了一个数值,包含离散型随机变量(抛硬币)和连续性随机变量(时间变化)。
随机变量取得不同值(各种情况发生)的可能性大小就是概率。概率分布是用来描述随机变量取值的概率规律。
所以要理解先验分布和后验分布,理解先验和后验概率就可以。会用到的例子就是瓜熟蒂落,因是瓜熟,果是蒂落。
先验概率:根据以往经验和分析得到的概率,用因果关系来说,就是根据以往的经验得出“因”概率。根据常识、经验得出‘瓜熟’的概率。
后验概率: 后验是指在经验之后,是需要经验的。所以后验概率需要用到先验概率。具体来说后验概率是指在得到结果之后重新修正得到的概率,后验概率基于新的信息,修正原来的先验概率后所获得的更接近实际情况的概率估计。通俗一点就是,已知‘果’得出‘因’的概率。已知‘蒂落’,推测出‘瓜熟’的概率。</