论文笔记(二) 【Variational Inference with Normalizing Flows】

本文深入探讨了在变分推断中的后验分布重要性,介绍了先验分布和后验分布的概念,并通过瓜熟蒂落的例子进行解释。文章还涉及似然函数和贝叶斯定理,以及变分推断的基本思想,即使用简单的分布逼近复杂的后验分布。标准化流(Normalizing Flows)作为当前热门的流模型主题,将在后续内容中进一步讨论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:Variztional Inference with Normalizing Flows

本文主要是关于现在特别的火的流模型的原理介绍,具体来说是关于标准化流(Normalizing FLows)的介绍

一、论文记录

1、在摘要中提出在变分推断中选择一个合适的后验分布是十分重要的。在这涉及到两个概念:后验分布(posterior distribution)和变分推断(variational inference),这两个概念已经接触好多次,但还是模模糊糊的,所以在这整理一下。

先验分布(prior distribution)和后验分布(posterior distribution)

   我们通常把一次试验中的结果称为随机变量,随机变量为每一个可能出现结果赋予了一个数值,包含离散型随机变量(抛硬币)和连续性随机变量(时间变化)。

     随机变量取得不同值(各种情况发生)的可能性大小就是概率概率分布是用来描述随机变量取值的概率规律。

    所以要理解先验分布和后验分布,理解先验和后验概率就可以。会用到的例子就是瓜熟蒂落,因是瓜熟,果是蒂落。

    先验概率:根据以往经验和分析得到的概率,用因果关系来说,就是根据以往的经验得出“因”概率。根据常识、经验得出‘瓜熟’的概率。

    后验概率: 后验是指在经验之后,是需要经验的。所以后验概率需要用到先验概率。具体来说后验概率是指在得到结果之后重新修正得到的概率,后验概率基于新的信息,修正原来的先验概率后所获得的更接近实际情况的概率估计。通俗一点就是,已知‘果’得出‘因’的概率。已知‘蒂落’,推测出‘瓜熟’的概率。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值