给我一个信号:使用手部手势作为植入式脑-机接口的潜在控制信号
1. 背景
脑-机接口(BCI)技术的发展主要目的是帮助严重瘫痪或闭锁综合症患者重新建立沟通渠道。通过绕过无法工作的肌肉系统,BCI直接连接大脑与外部世界,使得患者能够通过大脑活动控制外部设备。最初,BCI使用了P300诱发电位和慢皮层电位,这些信号可以通过脑电图(EEG)进行测量。
然而,EEG的空间分辨率较低,信噪比较差,限制了其解码大脑活动的能力。近年来,基于侵入性记录技术的BCI逐渐兴起,如单细胞/多单元记录和皮层脑电图(ECoG)。这些方法提供了更高的空间分辨率和更好的信噪比,能够更快速地区分多种认知状态。
手不仅是用来操纵物体,还可以用于交流。例如,在手语中,不同的手势代表字母表中的字母,这些手势可以表达复杂的含义。手语是完整的语言,能够传达任何信息。手部的肌肉由一系列皮层和皮下结构控制,包括小脑、基底神经节和初级运动皮层。手和手指在初级运动皮层中有特定的拓扑表示,这使得区分不同手势成为可能。
2. 研究方法
2.1 实验设计
为了研究手部手势的可解码性,我们使用了高场强的功能性磁共振成像(fMRI)和高密度皮层脑电图(ECoG)。参与者执行了来自美国手语字母表中的四种手势,分别用于fMRI和ECoG研究。这些手势包括“L”、“F”、“W”和“Y”。
手势 | 字母 |
---|---|
L | L |