pandas 数据处理与读写操作
在数据处理和分析领域,pandas 库是一个强大的工具。它提供了丰富的功能,包括数据结构的操作、数据的读写等。下面将详细介绍 pandas 中数据结构的索引操作、数据的读写功能。
1. 数据结构的层次索引
在 pandas 中,数据框(DataFrame)可以定义行和列的层次索引。在声明数据框时,需要为索引和列选项定义数组的数组。
import pandas as pd
import numpy as np
mframe = pd.DataFrame(np.random.randn(16).reshape(4,4),
index=[['white','white','red','red'], ['up','down','up','down']],
columns=[['pen','pen','paper','paper'],[1,2,1,2]])
print(mframe)
这个数据框具有两层索引,行索引分别为颜色(colors)和状态(status),列索引分别为对象(objects)和编号(id)。
2. 层次索引的重排和排序
有时候,需要重新排列轴上的层次顺序或对特定层次的值进行排序。
- swaplevel() 函数 :用于交换两个层次的顺序,数据本身不变。