多元线性回归、逐步回归、逻辑回归的总结

本文介绍了如何使用R语言进行多元线性回归、逐步回归和逻辑回归分析。通过实例展示了如何对数据进行预处理、构建模型以及评估模型的优劣。文中提到,通过R语言的lm()函数可以方便地实现多元线性回归,并通过残差图和QQ图评估模型。逐步回归利用AIC准则选择最优变量。逻辑回归则通过引入哑变量来分析分类变量与连续变量的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是我的个人博客地址。

线性回归,前面用Python从底层一步一个脚印用两种方法实现了回归拟合。在这个高级语言层出不穷的年代,这样做显然不明智,所以我考虑用优秀的数据分析工具——R语言(不敢说最优秀,虽然心里是这么想的,我怕有人要骂我!)做回归分析。包括简单多变量回归、逐步回归、逻辑回归!

多元回归分析,生活中用的很多,因为一个因素可能与很多其它因素有关!言归正传,这里考虑用R语言里面的相关函数做回归分析。

需要的用到的知识储备:

  • 线性代数

  • 概率论与数理统计

  • 高等数学

  • R语言基础

下面分别从普通多元线性回归、逐步回归、逻辑回归进行介绍。前面用Python实现的只是一元回归,由于R语言实现线性回归很方便,所以我会着重介绍原理。

多元线性回归

不论是单变量还是多元线性回归分析,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据技术派

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值