【SCRDet++代码调试】windows下调试(重点是“编译 setup.py(rotate) tensorflow版”)

本文指导了如何为SCRDet++代码调试设置环境,包括硬件(NVIDIA GPU驱动、CUDA/CuDNN)和软件(Anaconda、TensorFlow-GPU环境)配置。重点强调了显卡内存要求和常见错误解决方案,适合深度学习开发者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、环境要求

【论文】
【github代码位置】

显卡内存一定要大于等于11G!!! 如果没有达到,就不要尝试运行代码了……
在这里插入图片描述

二、硬件环境配置

为了使深度学习任务能够更高效地完成,通常使用图形处理器(Graphics processing unit,GPU)来并行处理深度学习中的计算任务。

在台式机GPU市场上,NVIDIA、AMD、Intel占据主导地位。这里使用NVIDIA公司型号为NVIDIA GeForce xxx 的GPU来完成任务。

在使用GPU之前,需要安装必要的驱动程序和环境等。

【说在前面的话】

听说,安装完 GPU 驱动以后,直接在 Anaconda 中安装 tensorflow-gpu 会自动安装匹配的 CUDA Toolkit、cdDNN?

如果有朋友尝试真的可以,麻烦告诉小弟一下!


参考:
1. 为什么深度学习和神经网络需要GPU?
2. 什么是显卡 - 图形处理器和显卡什么区别和联系
3. 英伟达(Nvidia)的图形处理器(GPU)怎样分类的,分别面向什么市场?
4. Win10 Anaconda 下 TensorFlow-GPU 环境搭建详细教程(包含CUDA+cuDNN安装过程)


1、安装 NVIDIA 图形驱动程序

NVIDIA 图形驱动程序是用来驱动 NVIDIA 图形处理器的程序,可在 NVIDIA 官网通过自动更新手动搜索的方式进行安装(推荐先手动搜索,再自动更新)。

【官方:NVIDIA 驱动程序下载】

2、安装 CUDA Driver

CUDA Driver 是 CUDA 工具包兼容的驱动程序。

CUDA(Compute Unified Device Architecture),是 NVIDIA 推出的运算平台/并行计算框架,只能用于 NVIDIA 旗下的 GPU,只有安装这个框架才能够进行复杂的并行计算(还有一个 cuDNN,是针对深度卷积神经网络的加速库)

安装 CUDA Toolkit 的时候,会默认安装 CUDA Driver


放两个帮助理解的解释:

1. 把 CUDA 想象成 NVIDIA 公司提供的一个计算平台,在这个平台上,可以使用 NVIDIA 公司提供的各种便捷计算工具来进行计算,不需要自己再来开发

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值