【SCRDet++代码调试】
一、环境要求
显卡内存一定要大于等于11G!!! 如果没有达到,就不要尝试运行代码了……
二、硬件环境配置
为了使深度学习任务能够更高效地完成,通常使用图形处理器(Graphics processing unit,GPU)来并行处理深度学习中的计算任务。
在台式机GPU市场上,NVIDIA、AMD、Intel占据主导地位。这里使用NVIDIA公司型号为NVIDIA GeForce xxx 的GPU来完成任务。
在使用GPU之前,需要安装必要的驱动程序和环境等。
【说在前面的话】
听说,安装完 GPU 驱动以后,直接在 Anaconda 中安装 tensorflow-gpu 会自动安装匹配的 CUDA Toolkit、cdDNN?
如果有朋友尝试真的可以,麻烦告诉小弟一下!
参考:
1. 为什么深度学习和神经网络需要GPU?
2. 什么是显卡 - 图形处理器和显卡什么区别和联系
3. 英伟达(Nvidia)的图形处理器(GPU)怎样分类的,分别面向什么市场?
4. Win10 Anaconda 下 TensorFlow-GPU 环境搭建详细教程(包含CUDA+cuDNN安装过程)
1、安装 NVIDIA 图形驱动程序
NVIDIA 图形驱动程序是用来驱动 NVIDIA 图形处理器的程序,可在 NVIDIA 官网通过自动更新或手动搜索的方式进行安装(推荐先手动搜索,再自动更新)。
2、安装 CUDA Driver
CUDA Driver 是 CUDA 工具包兼容的驱动程序。
CUDA(Compute Unified Device Architecture),是 NVIDIA 推出的运算平台/并行计算框架,只能用于 NVIDIA 旗下的 GPU,只有安装这个框架才能够进行复杂的并行计算(还有一个 cuDNN,是针对深度卷积神经网络的加速库)
安装 CUDA Toolkit 的时候,会默认安装 CUDA Driver
放两个帮助理解的解释:
1. 把 CUDA 想象成 NVIDIA 公司提供的一个计算平台,在这个平台上,可以使用 NVIDIA 公司提供的各种便捷计算工具来进行计算,不需要自己再来开发