
PyTorch
文章平均质量分 55
DecafTea
定量,归类(框架),融合,体系
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
python数据处理常用函数(持续更新)
enumerate(sequence, [start=0])参数:sequence – 一个序列、迭代器或其他支持迭代对象。start – 下标起始位置。返回值:列出数据和数据下标,一般用在 for 循环当中。for i, data in enumerate(train_loader): inputs, labels = data print(inputs,shape) print(labels.shape) break# print output: # torch.Size([.原创 2021-02-12 20:59:01 · 1459 阅读 · 0 评论 -
pytorch tensor张量维度转换
# view() 转换维度# reshape() 转换维度# permute() 坐标系变换# squeeze()/unsqueeze() 降维/升维# expand() 扩张张量# narraw() 缩小张量# resize_() 重设尺寸# repeat(), unfold() 重复张量# cat(), stack() 拼接张量文章链接:https://blog.csdn.net/x_yan033/article/details/104965077有详细总结原创 2021-02-12 20:19:52 · 263 阅读 · 0 评论 -
1. 线性回归/非线性回归代码
import numpy as npimport matplotlib.pyplot as pltfrom torch import nn, optimfrom torch.autograd import Variableimport torchx_data = np.random.rand(100)noise = np.random.normal(0, 0.01, x_data.shape)y_data = x_data * 0.1 + 0.2 + noiseplt.scatter(x原创 2021-02-11 13:47:42 · 580 阅读 · 0 评论 -
nn.Module类详解——使用Module类来自定义模型
1. 简介torch.nn.Module类pytorch里面一切自定义操作基本上都是继承nn.Module类来实现的,本文仅仅先讨论使用Module来实现自定义模块,自定义层先不做讨论。class Module(object): def __init__(self): def forward(self, *input): def add_module(self, name, module): def cuda(self, device=None): def c原创 2021-02-11 13:43:56 · 1276 阅读 · 0 评论