余弦距离与欧式距离

本文探讨了机器学习中常用的两种距离度量方法——余弦距离和欧式距离,介绍了它们的计算公式,并阐述了在计算两个向量相似度时的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二者在机器学习中的使用很广泛,都可用于计算两个向量间的相似度,各自的计算公式如下:
假设两个向量: x=(x1,x2,,xn)T,y=(y1,y2,,yn)T

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值