chap4 origin of markov chain

从中心极限定理和大数定理出发,探讨伯努利二项分布及正态分布的应用。深入分析Nekrasov对于独立事件与非独立事件的观点,以及Markovchain在非独立事件概率研究中的创新实验,证明了在特定条件下,非独立事件的概率分布同样能收敛于固定比例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

讲述了Markov chain的发明过程(研究生第一课><)

从中心极限定理和大数定理讲起的,伯努利发现二项分布,发现在独立实验中,某次实验结果出现的次数服从正态分布。类似最终的事件发生的概率其实事前已经注定,比如有放回抽样一堆黑白棋子(数量1:2),那么最终抽到的黑白棋子的个数比会收敛于1:2。但是Nekrasov声明,最终结果收敛于固定的比例仅限于独立分布事件,而现实生活中的大部分事件为非独立事件。即dependent事件。

俄罗斯数学家Markov和Nekrasov不和,Markov对此观点也不太认同。所以他设计了一个实验:现在有两个口袋,一个口袋里黑白棋子的数目是1:1,另外一个是1:2。同样是有放回抽样黑白棋子,但是抽到黑棋子,意味着下一次抽取为第一个桶,抽到白棋子,意味着下一次抽取为第二个桶。他成功的证明抽取足够多的次数,黑白棋子最终的个数也会收敛于一个比例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值