第T1周:Tensorflow实现mnist手写数字识别

目标

具体实现
(一)环境
语言环境:Python 3.10
编 译 器: PyCharm
框架: TensorFlow
**(二)具体步骤:

  1. 安装TensorFlow
    第一次使用这个框架,先安装,打开官网:TensorFlow
    image.png
# 先把PIP升级到最新版本
$ pip install --upgrade pip  
# 安装稳定版,支持CPU和GPU
$ pip install tensorflow

演示一下官方的代码看看能不能跑(我也看不懂是什么意思,就当是hello world,看看TF正常不):
image.png
image.png
跑成功了(下图),那说明我们安装也成功了。
image.png
下面就通过具体代码来熟悉熟悉TF的使用。
2. 使用TensorFlow实现MNIST手写数字识别
2.1 设置GPU
一上来就整高阶的GPU运算,大家如果没有显卡 ,可以使用CPU(应该默认就是使用CPU),那么本步骤可以直接忽略.

import tensorflow as tf  
print("可用的GPU数量: ", len(tf.config.list_physical_devices('GPU')))

image.png
我的机器明明有显卡,但是显示0,不管了,后面再研究。
选择GPU的代码:

import tensorflow as tf  
print("可用的GPU数量: ", len(tf.config.list_physical_devices('GPU')))  
  
gpus = tf.config.list_physical_devices("GPU")  
  
if gpus:  
    gpu0 = gpus[0]  # 如果有多个GPU,则使用第0个GPU  
    tf.config.experiment.set_memory_growth(gpu0, Tr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值