第P8周-Pytroch下YOLOv5-C3模块实现

目标

具体实现

(一)环境

语言环境:Python 3.10
编 译 器: PyCharm
框 架: Pytorch

(二)具体步骤
1. Utils.py
import torch  
import pathlib  
import matplotlib.pyplot as plt  
from torchvision.transforms import transforms  
  
  
# 第一步:设置GPU  
def USE_GPU():  
    if torch.cuda.is_available():  
        print('CUDA is available, will use GPU')  
        device = torch.device("cuda")  
    else:  
        print('CUDA is not available. Will use CPU')  
        device = torch.device("cpu")  
  
    return device  
  
temp_dict = dict()  
def recursive_iterate(path):  
    """  
    根据所提供的路径遍历该路径下的所有子目录,列出所有子目录下的文件  
    :param path: 路径  
    :return: 返回最后一级目录的数据  
    """    path = pathlib.Path(path)  
    for file in path.iterdir():  
        if file.is_file():  
            temp_key = str(file).split('\\')[-2]  
            if temp_key in temp_dict:  
                temp_dict.update({temp_key: temp_dict[temp_key] + 1})  
            else:  
                temp_dict.update({temp_key: 1})  
            # print(file)  
        elif file.is_dir():  
            recursive_iterate(file)  
  
    return temp_dict  
  
  
def data_from_directory(directory, train_dir=None, test_dir=None, show=False):  
    """  
    提供是的数据集是文件形式的,提供目录方式导入数据,简单分析数据并返回数据分类  
    :param test_dir: 是否设置了测试集目录  
    :param train_dir: 是否设置了训练集目录  
    :param directory: 数据集所在目录  
    :param show: 是否需要以柱状图形式显示数据分类情况,默认显示  
    :return: 数据分类列表,类型: list  
    """    global total_image  
    print("数据目录:{}".format(directory))  
    data_dir = pathlib.Path(directory)  
  
    # for d in data_dir.glob('**/*'): # **/*通配符可以遍历所有子目录  
    #     if d.is_dir():  
    #         print(d)    class_name = []  
    total_image = 0  
    # temp_sum = 0  
  
    if train_dir is None or test_dir is None:  
        data_path = list(data_dir.glob('*'))  
        class_name = [str(path).split('\\')[-1] for path in data_path]  
        print("数据分类: {}, 类别数量:{}".format(class_name, len(list(data_dir.glob('*')))))  
        total_image = len(list(data_dir.glob('*/*')))  
        print("图片数据总数: {}".format(total_image))  
    else:  
        temp_dict.clear()  
        train_data_path = directory + '/' + train_dir  
        train_data_info = recursive_iterate(train_data_path)  
        print("{}目录:{},{}".format(train_dir, train_data_path, train_data_info))  
  
        temp_dict.clear()  
        test_data_path = directory + '/' + test_dir  
        print("{}目录:{},{}".format(test_dir,  test_data_path, recursive_iterate(test_data_path)))  
        class_name = temp_dict.keys()  
  
    if show:  
        # 隐藏警告  
        import warnings  
        warnings.filterwarnings("ignore")  # 忽略警告信息  
        plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签  
        plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号  
        plt.rcParams['figure.dpi'] = 100  # 分辨率  
  
        for i in class_name:  
            data = len(list(pathlib.Path((directory + '\\' + i + '\\')).glob('*')))  
            plt.title('数据分类情况')  
            plt.grid(ls='--', alpha=0.5)  
            plt.bar(i, data)  
            plt.text(i, data, str(data), ha='center', va='bottom')  
            print("类别-{}:{}".format(i, data))  
            # temp_sum += data  
        plt.show()  
  
    # if temp_sum == total_image:  
    #     print("图片数据总数检查一致")  
    # else:    #     print("数据数据总数检查不一致,请检查数据集是否正确!")  
    return class_name  
  
  
def get_transforms_setting(size):  
    """  
    获取transforms的初始设置  
    :param size: 图片大小  
    :return: transforms.compose设置  
    """    transform_setting = {  
        'train': transforms.Compose([  
            transforms.Resize(size),  
            transforms.ToTensor(),  
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  
        ]),  
        'test': transforms.Compose([  
            transforms.Resize(size),  
            transforms.ToTensor(),  
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  
        ])  
    }  
  
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值