目录
一、简介
卷积神经网络(Convolutional Neural Network,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习的代表算法之一。
其结构主要分为输入层、隐藏层和输出层。
对于卷积神经网络而言,其输入层、输出层与平常的神经网络无异。但其隐藏层可以分为三个部分,分别是卷积层(对输入数据进行特征提取)、池化层(特征选择和信息过滤)和全连接层(等价于传统前馈神经网络中的隐藏层)。
二、隐藏层介绍
1、卷积层(Convolutional layer)
卷积将输入图像放进一组卷积滤波器,每个滤波器激活图像中的某些特征。
卷积过程可以提取特征,卷积神经网络是根据特征来完成分类的。
在Pytorch中,卷积层重要的函数是(二维卷积):
self.conv2d =nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,groups=1,bias=True,padding_mode='zeros'),其中:
1、in_channels:是输入的四维张量[N, C, H, W]中的C了,即输入张量的channels数。这个形参是确定权重等可学习参数的shape所必需的。
2、out_