神经网络学习笔记——利用pytorch搭建卷积神经网络(CNN)

目录

一、简介

二、隐藏层介绍

        1、卷积层(Convolutional layer)

        2、池化层(Pooling layer)

        3、全连接层

        4、具体实现代码


一、简介

        卷积神经网络(Convolutional Neural Network,CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习的代表算法之一。

        其结构主要分为输入层、隐藏层和输出层。

        对于卷积神经网络而言,其输入层、输出层与平常的神经网络无异。但其隐藏层可以分为三个部分,分别是卷积层(对输入数据进行特征提取)、池化层(特征选择和信息过滤)和全连接层(等价于传统前馈神经网络中的隐藏层)。

二、隐藏层介绍

        1、卷积层(Convolutional layer)

        卷积将输入图像放进一组卷积滤波器,每个滤波器激活图像中的某些特征。

        卷积过程可以提取特征,卷积神经网络是根据特征来完成分类的。

        在Pytorch中,卷积层重要的函数是(二维卷积):

        self.conv2d =nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1,groups=1,bias=True,padding_mode='zeros'),其中:

        1、in_channels:是输入的四维张量[N, C, H, W]中的C了,即输入张量的channels数。这个形参是确定权重等可学习参数的shape所必需的。

        2、out_

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱吃山竹的开心小迟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值