协同控制中的共识算法概述
1. 引言
自动驾驶车辆中嵌入式计算资源的丰富性极大地提升了其在民用和军事应用中的协同团队合作能力。与单独执行任务的车辆相比,协同工作的自动驾驶车辆可以实现更高的效率和操作能力。多车辆系统的潜在应用非常广泛,包括基于空间的干涉仪、战斗、监视和侦察系统、危险物质处理以及分布式可重构传感器网络等。为了实现这些应用,需要开发各种协同控制能力,如编队控制、会合、姿态对齐、群集、觅食、任务和角色分配、有效载荷运输、空中交通控制以及协同搜索等。
2. 协同控制中的挑战
多辆自动驾驶车辆的协同控制带来了显著的理论和实践挑战。首先,研究目标是开发一个由子系统组成的系统,而不是单一系统。其次,团队的通信带宽和连通性通常有限,车辆间的信息交换可能不可靠。决定何时、与谁以及交流什么信息也十分困难。第三,需要在团队目标和个人目标之间进行仲裁。此外,每辆车辆的计算资源总是有限的,这进一步增加了协同控制的难度。
3. 信息共识的必要性
信息共享是合作的必要条件。合作所需的信息可以通过多种方式进行共享。例如,相对位置传感器可以使车辆能够为其他车辆构建状态信息,知识可以通过无线网络在车辆之间进行通信,或者联合知识可能在任务开始前预编程到车辆中。基于这一公理,信息交换成为协同控制中的一个核心问题。我们将合作所必需的信息称为协调信息或协调变量。假设已经设计出一种特定的合作策略,并且已经证明在团队能够全局访问协调信息的情况下是有效的。如果团队中的每个成员都能够访问一致、准确和完整的协调信息,那么就会发生合作。然而,在存在不可靠、动态变化的通信拓扑和每辆车动态变化的局部情境意识的情况下,不可能所有车辆都能够访问一致、准确或完整的协调信息,也就是说