星型模型(Star Schema)和雪花模型(Snowflake Schema)是数据仓库设计中常用的两种多维数据模型,它们用于组织数据以支持高效的联机分析处理(OLAP)。这两种模型都旨在优化查询性能,但它们在表的结构和规范化程度上有所不同。
总结:星型模型存在数据冗余,所以在查询数据时只需要做少量的表连接,查询效率高;
雪花模型不存在数据冗余,但是在查询数据时需要做大量的表连接,查询效率低。
星型模型是非规范化的(不满足数据库的三范式),而雪花模型是高度规范化的(满足数据库的三范式)。
星型模型(Star Schema)
星型模型是一种非规范化的数据模型,它由一个或多个事实表(Fact Table)和多个维度表(Dimension Table)组成,这些表通过外键关联在一起。
- 事实表:包含业务过程中的度量值(如销售额、数量等),以及与维度表的外键关联。
- 维度表:包含描述性的属性,如时间、地点、产品等,它们为事实表提供上下文。
- 结构:星型模型的结构类似于一个星形,事实表位于中心,维度表从中心向外延伸,通过外键与事实表相连。
星型模型的优点包括:
- 简单的查询结构,因为所有的维度表都直接连接到事实表,减少了查询中的连接操作。
- 快速的查询性能,因为数据通常被预聚合和优化存储。
雪花模型(Snowflake Schema)
雪花模型是星型模型的一个变体,它是一种更加规范化的数据模型。在雪花模型中,维度表可以进一步分解为更细粒度的子维度表,这些子维度表通过外键与上级维度表关联。
- 事实表:与星型模型类似,包含度量值和维度的外键。
- 维度表:可以进一步分解为更细粒度的维度表,形成层次结构。
- 结构:雪花模型的结构类似于雪花,维度表被规范化成多个层级,每个层级通过外键与上一层级关联。
雪花模型的优点包括:
- 更高的规范化,减少了数据冗余。
- 更好的数据完整性,因为每个维度的属性都被隔离在单独的表中。
星型模型与雪花模型的区别
- 规范化程度:星型模型是非规范化的,而雪花模型是高度规范化的。
- 查询复杂性:星型模型的查询通常更简单,因为所有的维度表都直接连接到事实表。雪花模型的查询可能更复杂,因为需要更多的连接操作来访问维度的层次结构。
- 性能:星型模型通常提供更快的查询性能,尤其是在处理大量数据时,因为它们减少了连接操作。雪花模型可能需要更多的计算资源来处理多层次的连接。
- 数据冗余:星型模型可能会有数据冗余,因为它不分解维度表。雪花模型通过规范化减少了数据冗余。
在选择星型模型还是雪花模型时,需要根据具体的业务需求、查询复杂性、性能要求和数据管理策略来决定。
除此之外呢还有一种叫做星座模型,其实质就是多个星型模型通过公用维表联系在一起,如下图