
Pytorch
DeniuHe
加油!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Pytorch实现一个简单的贝叶斯卷积神经网络模型
在模型规模相似的情况下,普通 CNN 由于参数更少、计算流程更简单(无额外的 KL 散度计算和采样操作),训练速度显著快于贝叶斯 CNN。贝叶斯 CNN 的优势不在于训练效率,而在于其能量化预测的不确定性(例如通过多次采样得到预测分布),并在小样本、数据噪声大的场景下可能具有更好的泛化能力,但这是以更高的计算成本为代价的。原创 2025-08-03 11:04:08 · 951 阅读 · 0 评论 -
Pytorch实现目标检测
使用的数据集是:Kaggle上的Road Sign Detection数据集。该数据集共有877张图片。因为使用了OpenCV所以各种路径中不能有中文。这个是一定要注意的。在测试集上的分类准确率为:90.34%原创 2025-07-22 17:33:15 · 220 阅读 · 0 评论 -
nn.ReLU(inplace=True)中的inplace=True代表什么意思?
inplace=True的核心价值是通过牺牲数据完整性换取内存和计算效率,适用于显存敏感且无需保留输入的场景(如推理或预处理),但在训练阶段需谨慎评估其对梯度流的影响。原创 2025-07-21 11:33:34 · 164 阅读 · 0 评论 -
基于孪生网络 (Siamese Network) 的人脸识别系统
代码实现使用了 VGG19 预训练模型作为特征提取器,通过对比学习来判断两张人脸图像是否属于同一人。整个代码分为数据准备、模型构建、训练和测试四个主要部分。上一个帖子记录了基于普通CNN的人脸识别系统。但是,测试准确率实在太低了只有30%。这次使用**孪生网络(Siamese Net)**进行实现。原创 2025-07-21 10:00:42 · 181 阅读 · 0 评论 -
使用pytorch创建模型时,nn.BatchNorm1d(128)的作用是什么?
在PyTorch中,nn.BatchNorm1d(128) 的作用是对(如全连接层的输出或时间序列数据)进行。原创 2025-07-20 22:04:03 · 568 阅读 · 0 评论 -
基于Pytorch的人脸识别程序
这个实现采用了经典的分类方法进行人脸识别,通过训练一个多类分类器,使得同一个人的特征向量在特征空间中接近,不同人的特征向量远离。在实际应用中,还可以进一步改进,例如使用 Triplet Loss 或 ArcFace 等更先进的损失函数来优化特征空间。人脸识别是模式识别和计算机视觉领域的重要研究方向,其目标是从图像或视频中识别出特定个体的身份。如果需要使用这个程序,只需确保数据集路径正确,然后运行代码即可。现代人脸识别技术的突破主要归功于深度卷积神经网络的应用。当相似度超过设定阈值时,判定为同一人。原创 2025-07-20 18:28:27 · 879 阅读 · 0 评论 -
使用ImageFolder加载图像数据集
是 PyTorch 中用于加载图像数据集的实用类,特别适合处理按文件夹组织的图像数据。原创 2025-07-20 09:58:18 · 156 阅读 · 0 评论 -
Pytorch调用GPU实现简单的卷积神经网络
"""一个简单的调用GPU的卷积神经网络示例!"""import torchimport torchvisionfrom torchvision import datasetsfrom torchvision import transformsfrom torch.utils.data import DataLoaderbatch_size = 64device = torch.device("cuda:0")class CNN(torch.nn.Module): def.原创 2021-07-13 13:18:56 · 1638 阅读 · 1 评论 -
Pytorch:检验本地GPU是否可用
import torchdevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")print(device)原创 2021-07-12 15:42:25 · 362 阅读 · 0 评论 -
论文复现:Active Learning with the Furthest NearestNeighbor Criterion for Facial Age Estimation
import osimport torchimport numpy as npfrom copy import deepcopyfrom collections import OrderedDictfrom PIL import Imagefrom sklearn.model_selection import StratifiedKFoldclass FNN_2DLDA(object): def __init__(self, X_train, y_train, labe...原创 2021-07-08 19:55:09 · 302 阅读 · 5 评论 -
Pytorch:三维矩阵在第一维上取平均值
import torchimport numpy as np# ======初始化一个三维矩阵=====A = torch.ones((6,3,3))# ======替换三维矩阵里面的值======A[0] = torch.ones((3,3)) *2A[1] = torch.ones((3,3)) *5A[2] = torch.ones((3,3)) *5A[3] = torch.ones((3,3)) *5A[4] = torch.ones((3,3)) *5A[5] ...原创 2021-07-08 11:53:32 · 4231 阅读 · 0 评论 -
论文复现 Rank consistent ordinal regression for neural networks withapplication to age estimation
import torchimport torch.nn.functional as Ffrom torch import nnfrom torch.autograd import Variableimport pandas as pdimport numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import accuracy_scorefrom sklearn....原创 2021-07-06 11:46:47 · 476 阅读 · 0 评论 -
论文复现:Ordinal Regression with Multiple Output CNN for Age Estimation-2016 CVPR
该论文是对2001年Frank的一篇二分类分解的序分类模型的卷积神经网络的拓展。Frank E, Hall M. A simple approach to ordinal classification[C]//European Conference on Machine Learning. Springer, Berlin, Heidelberg, 2001: 145-156.该二分类分解方法的缺点就是预测类别之间的概率不一致性,有可能出现负概率的问题。但总之不影响模型的预测。对...原创 2021-07-05 20:05:07 · 451 阅读 · 0 评论 -
Pytorch :OneHot encoding 标签转换 代码
import torchimport numpy as npimport pandas as pddef convertLabel(datasetLabel): """ Labels (product ratings) from the dataset are provided to you as floats, taking the values 1.0, 2.0, 3.0, 4.0, or 5.0. You may wish to train with thes.原创 2021-07-04 13:19:45 · 492 阅读 · 0 评论 -
Pytorch 自定义损失函数
自定义HingeLoss class MyHingeLoss(torch.nn.Module): # 不要忘记继承Module def __init__(self): super(MyHingeLoss, self).__init__() def forward(self, output, target): """output和target都是1-D张量,换句话说,每个样例的返回是一个标量. """ hing..原创 2021-07-03 12:05:06 · 676 阅读 · 0 评论 -
Pytorch 实现简单的二分类
import torchimport torch.nn.functional as Ffrom torch.autograd import Variableimport matplotlib.pyplot as pltimport pandas as pdimport numpy as np# data = np.array(pd.read_csv(r"D:\RegressionData\sin.csv"))# x = data[:,0]# y = data[:,-1]# print(.原创 2021-07-02 20:04:13 · 906 阅读 · 0 评论 -
Pytorch 构建一层网络实现简单的回归预测
import torchimport torch.nn.functional as Ffrom torch.autograd import Variableimport matplotlib.pyplot as pltimport pandas as pdimport numpy as np# data = np.array(pd.read_csv(r"D:\RegressionData\sin.csv"))# x = data[:,0]# y = data[:,-1]# print(.原创 2021-07-02 17:15:18 · 249 阅读 · 0 评论