离散点与实际获取实时的连续点,进行做差处理方法

本文介绍了如何处理实时数据流中的期望路径与实际坐标之间的误差,通过最近邻插值法将连续数据映射到离散点上,并利用内插法如线性插值进行更精确的估计。这些技术在自主航行系统的航迹控制中发挥关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

** 如果你的期望路径是离散的一系列点,而实际获取的坐标是实时的连续数据流,你可以通过以下方式来处理实时的错误(error):**

1.最近邻插值(Nearest-Neighbor Interpolation): 在每个时刻,将实际获取的坐标映射到离它最近的期望路径上的点。这样,你可以计算实时的误差,并将其用于控制算法。
def find_nearest_point(current_position, desired_path):
distances = np.linalg.norm(desired_path - current_position, axis=1)
nearest_index = np.argmin(distances)
return desired_path[nearest_index]

# 在控制中使用
current_position = autonomous_boat.current_position
nearest_point = find_nearest_point(current_position, autonomous_boat.desired_path)
error = nearest_point - current_position

2.内插法(Interpolation): 通过插值方法,在离散的期望路径点之间估算实时坐标对应的期望点。这可以是线性插值、样条插值等。
from scipy.interpolate import interp1d

# 创建插值函数
interp_func = interp1d(time_points, desired_path, kind='linear', axis=0)

# 在航迹控制中使用
current_time = get_current_time()  # 获取当前时间
interpolated_point = interp_func(current_time)
error = interpolated_point - current_position
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值