** 如果你的期望路径是离散的一系列点,而实际获取的坐标是实时的连续数据流,你可以通过以下方式来处理实时的错误(error):**
1.最近邻插值(Nearest-Neighbor Interpolation): 在每个时刻,将实际获取的坐标映射到离它最近的期望路径上的点。这样,你可以计算实时的误差,并将其用于控制算法。
def find_nearest_point(current_position, desired_path):
distances = np.linalg.norm(desired_path - current_position, axis=1)
nearest_index = np.argmin(distances)
return desired_path[nearest_index]
# 在控制中使用
current_position = autonomous_boat.current_position
nearest_point = find_nearest_point(current_position, autonomous_boat.desired_path)
error = nearest_point - current_position
2.内插法(Interpolation): 通过插值方法,在离散的期望路径点之间估算实时坐标对应的期望点。这可以是线性插值、样条插值等。
from scipy.interpolate import interp1d
# 创建插值函数
interp_func = interp1d(time_points, desired_path, kind='linear', axis=0)
# 在航迹控制中使用
current_time = get_current_time() # 获取当前时间
interpolated_point = interp_func(current_time)
error = interpolated_point - current_position