多智能体系统决策与组织相关问题探讨
1. 多智能体概率推理的局限性与近似方法
在多智能体系统中,精确的多智能体概率推理在无界时间段内存在困难。从图相关分析可知,通过在接口交换信念进行消息传递,不能确保每个智能体的信念得到正确更新。这表明,在有限时间内维持智能体信念,无法实现无界时间段内的精确多智能体概率推理。因此,使用启发式方法进行近似推理是必要的,且还有许多替代方法有待探索。
2. 多智能体决策制定
在多智能体系统中,智能体需要根据对领域状态的信念、行动的可能后果以及对后果的偏好来做出决策。偏好可以用状态上的价值分布来表示。
智能体 $A_i$ 至少有三种类型的行动:
- 局部观察 :为了更新其信念,$A_i$ 可以选择观察局部变量,但这可能会产生成本。
- 通信 :$A_i$ 可以选择与其他智能体进行通信,以从其他智能体的观察中受益。
- 状态转换 :$A_i$ 可以采取行动来改变领域状态,例如更换设备或调整加热设置。
在决定状态转换行动时,智能体可以逐步决策,也可以预先规划一系列行动。研究问题包括:
- 是否可以对多智能体贝叶斯网络(MSBN)进行类似扩展,以支持逐步决策和行动序列规划。
- 如何分布式地表示合作智能体的偏好。
- 如何以决策理论的方式解决智能体在执行多个活动时的冲突。
- 在决定局部观察和通信行动时,如何权衡信息收集行动的预期价值和成本。
- 如何在状态转换行动后,有效利用仍然有效的观察结果,同时丢弃无效的观察结果来更新智