Flink原理与实现:详解Flink中的状态管理

本文探讨了Flink中的状态管理和checkpoint机制,解释了如何通过定期创建checkpoint来实现任务状态的持久化,确保在故障发生时能够进行快速恢复,避免数据的重复计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上面Flink原理与实现的文章中,有引用word count的例子,但是都没有包含状态管理。也就是说,如果一个task在处理过程中挂掉了,那么它在内存中的状态都会丢失,所有的数据都需要重新计算。从容错和消息处理的语义上(at least once, exactly once),Flink引入了state和checkpoint。

首先区分一下两个概念,state一般指一个具体的task/operator的状态。而checkpoint则表示了一个Flink Job,在一个特定时刻的一份全局状态快照,即包含了所有task/operator的状态。

Flink通过定期地做checkpoint来实现容错和恢复。

参考

Flink状态管理和恢复机制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值