1.语言检测
安装包:
# 语言检测
%pip install azure-ai-textanalytics==5.2.0
需要用到密钥和资源的终结点,所以去Azure上创建资源,我这个是创建好的了然后点击密钥和终结者去拿到key和终结点
两个密钥选择哪个都行
语言检测代码示例:
key = ""
endpoint = ""
from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential
def authenticate_client():
ta_credential= AzureKeyCredential(key)
text_analytics_client=TextAnalyticsClient(
endpoint=endpoint,
credential=ta_credential
)
return text_analytics_client
client=authenticate_client();
# 检测文本是哪种语言
def language_detection_example():
try:
documents = ["Ce document est rédigé en Français."]
response=client.detect_language(documents=documents,country_hint = 'us')[0]
print("response",response)
print("Language: ", response.primary_language.name)
except Exception as err:
print("Encountered exception. {}".format(err))
language_detection_example()
运行结果:
response {'id': '0', 'primary_language': DetectedLanguage(name=French, iso6391_name=fr, confidence_score=1.0), 'warnings': [], 'statistics': None, 'is_error': False, 'kind': 'LanguageDetection'}
Language: French
2.提取关键短语
# 提取关键语言
def key_phrase_extraction_example(client):
try:
documents = ["你好啊,我叫feng,是java程序员,想学习更多的知识"]
response = client.extract_key_phrases(documents = documents)[0]
if not response.is_error:
print("\tKey Phrases:")
for phrase in response.key_phrases:
print("\t\t", phrase)
else:
print(response.id, response.error)
except Exception as err:
print("Encountered exception. {}".format(err))
key_phrase_extraction_example(client)
返回:感觉对中文的提取一般不是很友好
Key Phrases:
feng
java程
你好
想学
多的知识
换成英文
documents = ["Dr. Smith has a very modern medical office, and she has great staff."]
关键字提取好像就会好很多啊!
["Hello, my name is Feng