Azure的AI使用-(语言检测、图像分析、图像文本识别)

本文介绍了如何在Python中使用Azure的AI服务进行语言检测(包括法语和中文),关键短语提取,以及计算机视觉功能,如图像分析、OCR文本识别,包括从URL和本地图片获取信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.语言检测

安装包:

# 语言检测
%pip install azure-ai-textanalytics==5.2.0

需要用到密钥和资源的终结点,所以去Azure上创建资源,我这个是创建好的了然后点击密钥和终结者去拿到key和终结点

两个密钥选择哪个都行 

语言检测代码示例: 

key = ""
endpoint = ""
from azure.ai.textanalytics import TextAnalyticsClient
from azure.core.credentials import AzureKeyCredential

def authenticate_client():
    ta_credential= AzureKeyCredential(key)
    text_analytics_client=TextAnalyticsClient(
        endpoint=endpoint,
        credential=ta_credential
    )
    return text_analytics_client
    
client=authenticate_client();

# 检测文本是哪种语言
def language_detection_example():
    try:
        documents = ["Ce document est rédigé en Français."]
        response=client.detect_language(documents=documents,country_hint = 'us')[0]
        print("response",response)
        print("Language: ", response.primary_language.name)

    except Exception as err:
        print("Encountered exception. {}".format(err))
language_detection_example()

运行结果:

response {'id': '0', 'primary_language': DetectedLanguage(name=French, iso6391_name=fr, confidence_score=1.0), 'warnings': [], 'statistics': None, 'is_error': False, 'kind': 'LanguageDetection'}
Language:  French

2.提取关键短语

# 提取关键语言
def key_phrase_extraction_example(client):

    try:
        documents = ["你好啊,我叫feng,是java程序员,想学习更多的知识"]

        response = client.extract_key_phrases(documents = documents)[0]

        if not response.is_error:
            print("\tKey Phrases:")
            for phrase in response.key_phrases:
                print("\t\t", phrase)
        else:
            print(response.id, response.error)

    except Exception as err:
        print("Encountered exception. {}".format(err))

key_phrase_extraction_example(client)

 返回:感觉对中文的提取一般不是很友好

Key Phrases:
		 feng
		 java程
		 你好
		 想学
		 多的知识

换成英文 

documents = ["Dr. Smith has a very modern medical office, and she has great staff."]

 关键字提取好像就会好很多啊!

 ["Hello, my name is Feng
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值