使用FAISS进行高效相似性搜索和向量聚类: 从安装到高级查询

使用FAISS进行高效相似性搜索和向量聚类: 从安装到高级查询

引言

FAISS (Facebook AI Similarity Search) 是一个用于高效相似性搜索和稠密向量聚类的库。无论是小规模的数据集还是无法完全加载到内存的大规模数据集,FAISS 提供了一整套算法用于在各种规模的向量集合中进行搜索。本文将详细讲解FAISS的功能,并展示其如何与LangChain集成使用。

主要内容

安装和设置

首先,我们需要安装相关的包。在安装FAISS时,可以选择安装适用于CPU或GPU的版本。

pip install -qU langchain-community faiss-cpu
# 如果需要GPU支持,请运行以下命令
# pip install -qU faiss-gpu

如果你希望对模型调用进行自动追踪,可以设置LangSmith API密钥:

import os
import getpass

# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()

初始化

在初始化时,我们需要选择合适的嵌入向量模型。下面展示了如何使用OpenAI和HuggingFace的嵌入向量模型:

# OpenAI 嵌入向量模型
pip install -qU langchain-openai

os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import OpenAIEmbeddings

embeddings = OpenAIEmbeddings(model="text-embedding-3-large")

# HuggingFace 嵌入向量模型
pip install -qU langchain-huggingface

from langchain_huggingface import HuggingFaceEmbeddings

embeddings = HuggingFaceEmbeddings(model="sentence-transformers/all-mpnet-base-v2")

# Fake 嵌入向量模型,用于测试
pip install -qU langchain-core

from langchain_core.embeddings import FakeEmbeddings

embeddings = FakeEmbeddings(size=4096)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值