使用FAISS进行高效相似性搜索和向量聚类: 从安装到高级查询
引言
FAISS (Facebook AI Similarity Search) 是一个用于高效相似性搜索和稠密向量聚类的库。无论是小规模的数据集还是无法完全加载到内存的大规模数据集,FAISS 提供了一整套算法用于在各种规模的向量集合中进行搜索。本文将详细讲解FAISS的功能,并展示其如何与LangChain集成使用。
主要内容
安装和设置
首先,我们需要安装相关的包。在安装FAISS时,可以选择安装适用于CPU或GPU的版本。
pip install -qU langchain-community faiss-cpu
# 如果需要GPU支持,请运行以下命令
# pip install -qU faiss-gpu
如果你希望对模型调用进行自动追踪,可以设置LangSmith API密钥:
import os
import getpass
# os.environ["LANGCHAIN_TRACING_V2"] = "true"
# os.environ["LANGCHAIN_API_KEY"] = getpass.getpass()
初始化
在初始化时,我们需要选择合适的嵌入向量模型。下面展示了如何使用OpenAI和HuggingFace的嵌入向量模型:
# OpenAI 嵌入向量模型
pip install -qU langchain-openai
os.environ["OPENAI_API_KEY"] = getpass.getpass()
from langchain_openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
# HuggingFace 嵌入向量模型
pip install -qU langchain-huggingface
from langchain_huggingface import HuggingFaceEmbeddings
embeddings = HuggingFaceEmbeddings(model="sentence-transformers/all-mpnet-base-v2")
# Fake 嵌入向量模型,用于测试
pip install -qU langchain-core
from langchain_core.embeddings import FakeEmbeddings
embeddings = FakeEmbeddings(size=4096)