# 使用Python和SQL实现CSV文件问答系统全攻略
现代化的数据分析离不开问答系统,尤其是在处理CSV数据文件时。对于开发者来说,大语言模型(LLMs)提供了构建强大问答系统的潜力,但需要妥善配置工具以便对数据进行查询和交互。本文将介绍如何使用Python和SQL库来创建基于CSV文件的问答系统。
## 引言
CSV文件是一种常见的数据存储格式,而如何使得LLM对这些数据进行查询和交互是建立问答系统的关键。本文将介绍两种主要的方法,将CSV文件加载到SQL数据库并使用Python代码围绕CSV构建问答系统。
## 方法详解
### 方法一:通过SQL操作CSV数据
1. **为什么推荐使用SQL**:使用SQL可以方便地限制权限和查询的安全,因为操作范围明确且容易控制。
2. **准备工作**:
- 安装必要的Python库:
```bash
%pip install -qU langchain langchain-openai langchain-community langchain-experimental pandas
```
- 下载并加载CSV数据:
```bash
!wget https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/stuff/titanic.csv -O titanic.csv
import pandas as pd
df = pd.read_csv("titanic.csv")
```
3. **将CSV加载到SQL数据库**:
- 在SQLite中创建数据库并导入数据。
```python
from sqlalchemy import create_engine
engine = create_engine("sqlite:///titanic.db")
df.to_sql("titanic", engine, index=False)
```
4. **执行SQL查询**:
- 使用数据库工具