在本篇博客中,我们将探讨如何使用多索引路由(Routing)实现一个基于检索增强生成(RAG)的问答应用。该应用能够根据用户问题在不同领域的检索器之间进行路由,并查询相应的数据库。我们将涉及到PubMed、ArXiv、Wikipedia和Kay AI (用于SEC文件)等域数据库。
技术背景介绍
RAG(Retrieval-Augmented Generation)是一种结合了检索和生成技术的QA系统。它通过先从数据库中检索相关文档,然后利用生成模型生成答案。这种方法可以解决传统生成模型单纯依赖训练数据的问题,提升答案的准确性和实用性。
核心原理解析
在多索引路由的RAG系统中,我们会根据用户问题的领域选择特定的检索器。每个检索器对应一个特定域的数据库(如PubMed、ArXiv等)。通过这种方式,可以将检索过程精细化,确保检索结果的相关性和准确性。
代码实现演示
首先,我们需要设置环境变量以配置Kay AI和LangSmith:
export KAY_API_KEY="<YOUR_API_KEY>"
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>
接下来,安装LangChain CLI:
pip install -U langchain-cli
创建一个新的LangChain项目:
langchain app new my-app --package rag-multi-index-router
或者,在已有项目中添加此包:
langchain app add rag-multi-index-router
在server.py
文件中添加以下代码:
from rag_multi_index_router import chain as rag_multi_index_router_chain
# 添加路由配置
add_routes(app, rag_multi_index_router_chain, path="/rag-multi-index-router")
希望使用LangSmith进行监控和调试,我们可以配置之后启动LangServe实例:
langchain serve
该命令将启动一个本地的FastAPI应用,运行在 http://localhost:8000。
我们可以通过以下代码在应用程序中访问模板:
from langserve.client import RemoteRunnable
# 配置远程任务
runnable = RemoteRunnable("http://localhost:8000/rag-multi-index-router")
应用场景分析
-
跨领域科研文献查询:在科研工作中,经常需要从不同领域的数据库检索文献,如医学、物理学等。该系统能够根据问题的领域选择相应的数据库,提高检索效率和准确性。
-
金融数据分析:在金融行业工作中,需要从不同数据源获取财务信息,如SEC文件。使用多索引路由可以确保查询的准确性,并提高数据整合的效率。
-
综合信息搜索:在日常信息查询中,用户可能会有跨领域的问题。多索引路由的RAG系统能够智能选择数据库,为用户提供最相关的答案。
实践建议
-
领域分类:在使用多索引路由时,需要对问题进行领域分类。可以使用预训练的分类模型,或者根据关键词进行简单分类。
-
缓存机制:为提高检索效率,可以在系统中加入缓存机制,存储常见问题的答案,减少重复的查询请求。
-
持续监控与调试:通过LangSmith等工具进行持续监控和调试,确保系统的稳定性和高效运行。
希望这篇文章能为你提供有用的指导,帮助你实现多索引路由的RAG应用。如果遇到问题欢迎在评论区交流。
—END—