大小写模型训练说明书

本文档详细介绍了如何训练和应用TrueCase模型,该模型用于学习训练数据中的大小写规则,以提高文本转换的准确性。训练过程包括指定文件路径和使用特定脚本命令,应用模型则涉及读取训练数据并输出处理后的文件。此外,还提供了一个Python脚本用于修剪输出文件,只保留高频率的大写单词。通过这个流程,可以有效地处理名字、地点等专有名词的大小写问题,优化自然语言处理任务的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大小写模型训练说明书

需要训练一个truecase模型。注意:只能使用训练集训练truecase模型。truecase则会学习训练数据,判断句子中的名字、地点等需要大写的内容并将其保留,其余则小写,提升模型转换时候的准确性。

  1. 训练大小写模型
    1.1 文件位置: /home/post/punc/src/caps_look/mosesdecoder-master/scripts/recaser/
    1.2 脚本命令: train-truecaser.perl -corpus data/train.txt -model path/to/truecase.model
    其中-corpus后跟训练源数据 -model后跟大小写训练model位置。

  2. 应用apply (将训练得到的语种truecase模型应用到数据集上)
    2.1 文件位置: /home/post/punc/src/caps_look/mosesdecoder-master/scripts/recaser/
    2.2 脚本命令: truecase.perl -model path/to/truecase.model < data/train.txt > data/case.txt
    其中-model后跟上条脚本中大小写训练model位置 < 后跟上脚本中训练源数据
    后跟模型输出的数据文件
    其中得到的输出数据文件如下格式 Hello(8/14) hello(6/14)

  3. 修剪truecase输出文件(修剪格式,只保留单词,过滤频次)
    3.1 文件位置: /home/post/punc/src/precess_truecase/precess_truecase.py
    3.2 脚本命令: ./precess_truecase.sh
    其中在precess_truecase.py中可根据词典大小需求设置裁剪阈值flag=x , 将大写单词后频次低于x值的单词过滤不保留。
    解码器需要处理格式为只保留大写单词,小写单词去除,括号内去除。格式如下
    Hello
    Apple
    Banana

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值