SAM中离线使用bert-base-uncased的方法

本文指导如何从HuggingFace下载预训练的BERT-base-uncased模型,并将其必要文件如config.json等存储在本地文件夹。随后,需修改get_tokenizer.py中的路径设置,以便正确加载和运行模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

下载huggingface-bert-base-uncased中列出的必要文件,包括config.json、flax_model.msgpack、pytorch_model.bin、tf_model.h5、tokenizer.json、tokenizer_config.json、vocab.txt。

步骤2:将下载的文件(步骤1中的文件)放入你的本地文件夹。例如,本地文件夹可以是Grounded-Segment-Anything/huggingface/bert-base-uncased。

步骤3:修改get_tokenlizer.py#L17和get_tokenlizer.py#L23中的text_encoder_type为你的本地文件夹路径(在步骤2中定义)。

步骤4:运行模型并享受它。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值