学习笔记-Newton-Raphson法求解多元非线性方程组及matlab案例代码

本文介绍了如何使用牛顿-拉夫逊方法解决多元非线性方程组,包括方程组的转换、雅可比矩阵的计算、初始值的选择以及迭代计算过程。并提供了MATLAB程序代码作为实际应用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

牛顿迭代法可以推广到多元非线性方程组F(x)=0的情况,称为牛顿–拉夫逊方法 (Newton-Raphson method). 当 F(x)关于x的 Jacobi 矩阵 J(x)=(∂F/∂x)可逆时, 有:
在这里插入图片描述
求解案例:
1、多元非线性方程组
在这里插入图片描述
2、转换方程组F(x)=0
在这里插入图片描述
3、求Jacobi 矩阵 J(x)
在这里插入图片描述

4、取初始值
在这里插入图片描述
5、进行迭代计算
在这里插入图片描述
6、matlab程序代码

clear
clc
% 构造函数
F=@(x)[2*x(1
### 使用 MATLAB 实现 Newton-Raphson求解非线性方程组 Newton-Raphson是一种迭代方,用于寻找函数的根。对于单变量情况,该方通过逐步逼近来找到零点;而对于多维情况下,则可以用来解决非线性方程组。 #### 函数定义与雅可比矩阵计算 为了实现这一算,在 MATLAB 中首先需要定义目标函数以及其对应的雅克比行列式(Jacobian matrix)。假设有一个由两个未知数构成的简单例子: \[ f(x,y)=\begin{bmatrix}f_1 \\ f_2 \end{bmatrix}=0,\quad J=\frac{\partial(f_1,f_2)}{\partial (x,y)}= \left[\begin{array}{cc}\dfrac {\partial f_{1}}{\partial x}&\dfrac {\partial f_{1}}{\partial y}\\[8pt]\dfrac {\partial f_{2}}{\partial x}&\dfrac {\partial f_{2}}{\partial y}\end{array}\right] \] 这里 \(f\) 表示给定的一系列非线性方程式组成的向量形式,而 \(J\) 则表示这些方程式的偏导数组成的矩阵[^1]。 ```matlab function F = myFun(z) % 定义非线性方程组 x = z(1); y = z(2); F = zeros(2, 1); F(1) = exp(-exp(-(x + y))) - x * (1 + x^2); F(2) = x * cos(y) + y * sin(x) - 0.5; end function J = jacobianF(z) % 计算 Jacobian 矩阵 h = 1e-6; % 小增量 J(:, :) = [ diff(myFun([z(1)+h;z(2)]),myFun([z(1)-h;z(2)]))./(2*h), diff(myFun([z(1);z(2)+h]),myFun([z(1);z(2)-h]))./(2*h)]; function dfdx = diff(Fp,Fm) dfdx = (Fp-Fm)/(2*h); end end ``` #### 迭代过程 接下来编写主程序来进行牛顿的实际运算。此部分会重复执行直到满足收敛条件为止: ```matlab % 初始化参数设置 maxIter = 100; % 最大迭代次数 tolerance = 1E-7; % 收敛精度标准 initialGuess = [0 ; 0]; % 初始猜测值 for iter = 1:maxIter deltaZ = -(jacobianF(initialGuess)\myFun(initialGuess)); % 更新步长 initialGuess = initialGuess + deltaZ; if norm(deltaZ)<tolerance || abs(sum(myFun(initialGuess)))<tolerance break; end end disp(['Solution found at iteration ', num2str(iter)]); disp('Roots are:'); disp(initialGuess); if iter >= maxIter warning('Maximum number of iterations reached'); else disp('Converged successfully!'); end ``` 上述代码展示了如何利用 MATLAB 来应用 Newton-Raphson 求解特定类型的非线性方程组,并提供了具体的实例说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值