科研利器再升级!SciSpace Deep Review深度综述到底比OpenAI/Gemini强在哪?(实测体验)

SciSpace是一个针对学术科研场景的一站式AI工具,包括单篇/多篇PDF解读,文献综述,AI检测、写作等功能,之前娜姐详细介绍过:           

AI文献综述神器,有这一款就够了!           

最近SciSpace也推出了deep review--深度综述功能:一款基于多智能体方案的文献综述工具。

娜姐带大家来体验一下,它和OpenAI/Gemini的多智能体Deep Research相比,效果如何。           

实测体验:           

首先,输入你的研究主题,和OpenAI/Gemini一样,deep review也会进一步和你确认和明确研究范围:    

图片

           

之后,它就自行拆解主题,制定大纲,规划检索关键词,执行检索任务:

图片

           

最后汇总top20的论文结论,整理成综述报告:    

图片

           

文献都是最新的。点击链接,可以跳转到文末的参考文献列表:

图片

           

文末还针对各种疗法整理了一个带参考文献引用的表格,这个不错:    

图片

参考文献引用格式,可以根据你的需求一键转换,还可以对输出内容以知识点/段落 两种方式切换:

图片

    

           

如果你想深入某一个主题,文末的Related Questions支持你继续深挖:  

图片

           

体验下来,有点像综合了Perplexity deep search、OpenAI/Gemini deep research功能的一款多智能体驱动的学术主题检索工具。

对比一下,SciSpace的深度综述Deep Review,和Gemini、OpenAI的Deep Research有哪些异同?           

1 底层模型:

Gemini是2.0 Flash;

OpenAI是ChatGPT o3;

SciSpace的deep review没有明确说明,但是官方将其 AI 助手称为“ChatGPT + SciSpace”的融合产物,即结合了OpenAI ChatGPT的对话能力和SciSpace对学术文献的专业理解。SciSpace Deep Review底层很可能使用了OpenAI的GPT-4等现有大型模型。      

2 数据来源:

Gemini deep research:背靠谷歌搜索引擎,可以搜索整个互联网。

OpenAI deep research:主流新闻媒体、pubmed、学术期刊官网等。

SciSpace Deep Review:学术论文语料库。自身宣传包含200M+论文,涵盖Semantic Scholar、PubMed、arXiv等主流论文数据源。

优点:

1 数据源全部是学术论文,且生成的报告文献比较新;

2 参考文献来源真实准确,格式可以自定义。           

缺点:

1 单次检索输出的参考文献数量只有20条。

2 深度综述的深度还是不如OpenAI的deep research,和Perplexity相当。它最大的优势就是数据源都是学术论文,且来源准确可信。Perplexity有时候来源不准确,需要自己去核实。           

免费用户一天可以体验3次左右,付费每月20美金(学生用户有折扣)。           

网址是:https://typeset.io/ 检索框输入问题后,点亮Deep Review就可以免费体验了,值得一试。

### OpenAI/Gemini/Claude 版本升级后的正常使用与模型优化 #### 1. 升级准备与兼容性测试 为了确保在版本升级后仍能正常运行,建议提前进行全面的兼容性测试。这包括但不限于验证现有应用程序接口(API)调用是否仍然有效以及新功能是否按预期工作[^1]。 对于OpenAIGemini和Claude这样的大型语言模型(LLM),每次更新都可能引入新的API端点或改变已有参数的行为方式。因此,在正式环境中部署之前,应该在一个隔离的测试环境中先行尝试新版LLM的各项特性,并记录下任何不一致之处以便及时调整应用逻辑。 ```python import openai def test_api_compatibility(model_version="latest"): try: response = openai.Completion.create( engine=model_version, prompt="Test this API compatibility.", max_tokens=5 ) print(f"Model {model_version} responded successfully.") except Exception as e: print(f"Error occurred with model {model_version}: ", str(e)) test_api_compatibility() ``` #### 2. 参数微调与超参优化 随着LLM不断进化,开发者可以利用更先进的技术手段来进行参数微调(hyperparameter tuning)以提升预测准确性。例如,通过网格搜索(Grid Search)或者贝叶斯优化(Bayesian Optimization)寻找最佳的学习率(learning rate)、批次大小(batch size)等关键配置项[^3]。 此外,针对特定应用场景还可以考虑采用迁移学习的方法——即先基于大规模通用语料预训练一个基础模型,再结合少量领域内数据做进一步精调(fine-tuning),从而获得更好的泛化能力和更高的精度表现。 #### 3. 数据增策略的应用 除了直接修改模型内部结构外,外部输入的数据质量同样影响着最终效果的好坏。为此,可以通过实施诸如回译(back-translation)、同义词替换(synonym replacement)等多种形式的数据扩充(data augmentation)措施来增加样本多样性并减少过拟合风险[^5]。 具体来说就是收集更多高质量的真实世界案例作为补充素材;或是借助其他开源项目提供的工具自动生成合成实例用于训练过程中的辅助教学目的。 #### 4. 实时监控与反馈机制建设 最后但并非最次重要的是建立健全一套完善的实时监测体系(real-time monitoring system),持续跟踪线上服务状态变化趋势的同时快速响应潜在异常情况的发生。一方面要密切关注资源消耗水平如CPU利用率、内存占用量等方面指标;另一方面也要重视用户体验层面的因素比如延迟时间(latency time)、错误发生频率(error frequency)等等。 当检测到性能瓶颈时,则需立即启动应急预案采取相应补救行动直至恢复正常运作为止。同时鼓励用户提供正向或负向评价帮助系统自我迭代完善。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值