Gemini Deep Research:科研场景的四大妙用,让学术研究效率翻倍!

不少同学问我:"娜姐,Gemini Deep Research和ChatGPT的Deep Research比起来怎么样?"

说实话,虽然在综合能力上ChatGPT的o3模型更强,但Gemini Deep Research有它独特的优势,特别是在某些特定的学术应用场景下,效果相当不错。

更重要的是,Gemini Advanced用户可以不限次数使用Deep Research功能(每月20美金),而ChatGPT Plus用户每月只有15次机会。对于需要频繁进行文献调研的科研工作者来说,这个优势不容小觑。

一、Gemini Deep Research的底层技术分析:

图片

二、Gemini deep research 5大学术场景详解

场景一:快速梳理领域前沿现状

传统的文献综述往往需要我们手动在各个数据库中搜索,然后逐一筛选相关文献,费时费力。

提示词示例:

请基于过去XX年的同行评议研究,为我梳理[XX研究领域]的现状。需要包括:

1. 该领域的主要研究方向和子领域

2. 目前存在的主要争议点

3. 未解决的关键挑战

4. 按子主题组织的研究现状

实际效果:

娜姐用这个方法测试了"螯合化合物通过调节金属离子水平对阿兹海默症的影响"主题进展。 

图片

Gemini deep research首先根据我的框架,帮我计划了一份详细的研究大纲:

图片

确认大纲后,点击“开始研究”。Gemini在调研了几百个网站以后,生成一份1.4w字的进展报告:

图片

主要争议点和关键挑战部分也非常有启发:

图片

所有的参考文献都在文末列出来了,对于快速跟进领域进展还是很有帮助的。但是,报告也存在有些小节和主题不相关的情况,取你需要的部分即可。

场景二:批判性分析与观点对比

学术研究的核心在于批判性思维的呈现。Gemini Deep Research可以帮我们快速找到针对某一有争议结论的正反方观点和对立论据,丰富论证过程。

提示词模板:

请分析关于[具体观点/理论]的主要正反方观点:

1. 挑战该观点的核心论据有哪些?

2. 支持和反对的学者分别提出了什么证据?

3. 争议的焦点在哪里?

4. 请总结双方的核心观点并提供相关研究文献。

图片

图片

这种方法特别适合给论文中有争议性的观点寻找论据支撑,完善研究假设和理论框架,提高论文的严谨性。

场景三:基金资助申请书优化

分析当前的资助趋势,帮助研究者了解自己的研究如何与国家资助重点相匹配。

提示词模版:

请分析["螯合化合物通过调节金属离子水平对阿兹海默症的影响"]的最新资助趋势和优先方向:

1. 过去5年该领域的主要研究空白 

2. 当前研究的时机和重要性性分析 

3. 与中国/国际资助优先级的对应关系 

4. 提供有说服力的项目申请理由 

5. 包含最新的政策文件和资助指南引用 (可以上传政策文件或资助指南给Gemini作为参考)

图片

最后生成的报告非常有针对性并附带完整的参考文献资料: 

图片

附带国内外主要资助机构的资助重点:

图片

整理成表格呈现:

图片

图片

帮你针对主题总结有说服力的申请理由:

图片

一个强有力的基金申请理由,对于打动评审专家是很重要的。Gemini deep research的这份报告可以给你很多参考和启发。

场景四:跨领域合作机会和项目挖掘

现代科研越来越需要跨学科合作,Gemini Deep Research可以帮我们发现相邻领域的研究方法和合作机会。

比如细分领域+AI的项目挖掘分析:

提示词模版:

请分析和整合[螯合化合物通过调节金属离子水平对阿兹海默症的影响]和[AI大模型]相关领域研究:

1. 两个领域使用了哪些可转移的技术或方法?

2. 有哪些值得借鉴的研究思路?

3. 这两个领域存在哪些合作机会?

4. 请引用相关的代表性研究

图片

最后生成的跨领域合作可能性报告:

图片

图片

代表性文献总结:

图片

以上就是Gemini Deep Research在学术研究中的四个具体场景应用。从文献梳理到跨领域挖掘,这些原本需要几天甚至几周的工作,现在几小时就能完成初步调研。

让AI做信息整理,让人脑做深度思考——这才是用AI高效科研的真正秘诀。

--- 

今天就介绍到这里。

如果觉得有用,欢迎在看、转发和点赞!娜姐继续输出有用的AI辅助科研写作、绘图相关技巧和知识。 

内容概要:本文探讨了推理大模型及其应用场景,尤其是DeepSeek与Gemini的深度应用。文章首先对比了通用大模型与推理大模型的特点,接着详细介绍了推理大模型DeepSeek和Gemini的功能和技术原理。其中,DeepSeek具备强大的链式推理能力和高度可解释性,并能在数学竞赛和客户服务平台等场合发挥作用;而Gemini Deep Research则通过整合海量信息,为用户提供决策支持。此外,文章还讲述了推理大模型的未来发展趋势、现有局限性和团队大模型应用的实践经验,以及在行业热点事件、舆论分析和智能生成方面的实际应用场景。文中提到DeepSeek和Kimi、Mermaid AI、PPT助手联合使用的成功案例。最后,文章对推理大模型的使用心得进行了总结,指出了推理大模型在未来发展中的可能性与注意事项。 适用人群:对AI技术感兴趣的研发人员、技术人员、产品经理、数据分析人员、以及需要进行大量信息检索和分析工作的专业人士。 使用场景及目标:可用于提升客户服务效率、复杂信息搜索、数据分析、市场研究与策略制定,帮助用户更快速地完成高质量的信息调研和分析任务。特别是对于需要深度解析的专业领域,如金融、科技、政策研究等行业。 其他说明:虽然推理大模型在效率上有很大提升,但仍有其局限性,如研究质量和准确性有待提高、不能完全取代专业人员判断、存在内容风险等问题。随着技术研发的进步,未来的改进方向主要包括提高模型能力、丰富输出形式、强化事实验证与控制及其他Agent的整合。与此同时,文中提及的团队案例也强调了人机协作的重要性及如何克服AI实施初期的心理和技术障碍。用户在应用过程中,应当根据实际情况,合理选用不同类型的AI工具,以达到最佳的应用效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值