9,图像转置

这篇文章详细描述了一个C++函数`transpose()`,用于将图像的宽和高以及像素坐标进行互换,通过`CDib`类和`LoadFile`方法处理`result.bmp`文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

即宽高的大小互换,像素的x坐标和y坐标也互换

void CDib::transpose()
{
//指向原图像指针
LPBYTE p_data = GetData();
//图像的宽和高
LONG width = GetWidth();
LONG height = GetHeight();
//图像每行字节数
LONG iLineBytes = (width * 8 + 31) / 32 * 4;
//新图像每行字节数
LONG lNewLineBytes = (height * 8 + 31) / 32 * 4;
//指向原像素的指针
LPBYTE lpSrc;
//指向转置图像对应像素的指针
LPBYTE lpDst;
//分配内存
LPBYTE temp = new BYTE[width * lNewLineBytes];
//针对图像每行进行操作
for (int j = 0; j < height; j++)
{
//针对图像该行的每列进行操作
for (int i = 0; i < width; i++)
{
//指向原DIB第j行i列的像素的指针
lpSrc = (LPBYTE)p_data + iLineBytes * j + i;
//指向转置DIB第i行j列像素的指针
lpDst = (LPBYTE)temp + lNewLineBytes * i + j;
//复制像素
*lpDst = *lpSrc;
}
}
m_pBitmapInfoHeader->biWidth = height;
m_pBitmapInfoHeader->biHeight = width;
//复制图像
memcpy(p_data, temp, width * height);
}
加载文件后调用

CMy1_showbitmapView::CMy1_showbitmapView()
{
_cdib.LoadFile (“D:/Test/DataProcess/result.bmp”);
_cdib.transpose();
}

在这里插入图片描述

<think>嗯,用户这次的问题是关于如何在MATLAB中实现图像转置。看起来用户明确需要方法或代码示例,而且提供了四个相关引用素材。让我先仔细分析一下用户提供的资料。引用[1]提到用transp函数,但特别说明这实际上是水平镜像操作;引用[2]展示了用affine2d和imwarp实现转置变换;引用[3]强调了矩阵转置的通用性;引用[4]则给出了最底层的像素坐标互换方法。用户可能是个刚开始接触图像处理的MATLAB使用者,因为如果是有经验的人应该知道基本的转置操作。用户的核心需求是“如何操作”,但深层可能还关心:哪种方法最准确?为什么会有不同实现方式?是否需要注意颜色空间?从资料来看,至少存在三种技术路线:直接矩阵转置(冒号操作符或transp)、仿射变换、像素遍历。考虑到图像数据本质是三维矩阵(高度×宽度×通道数),单纯转置二维矩阵是不够的。引用[4]的处理就忽略了颜色通道,只处理了第一个通道。这可能是用户没意识到但实际需要避免的坑点。专业实现上应该优先推荐imwarp方案,因为:1)affine2d的转置矩阵[010;100;001]能严格对应坐标互换的数学定义;2)自动处理多通道图像;3)支持各种图像数据类型。而矩阵转置虽然代码简单(加个撇号),但容易让人误解为数学转置,实际效果是镜像+旋转的组合。用户提供的引用素材中有个关键矛盾点:引用[1]说transp是镜像,但数学上转置应该是行列互换。查了MATLAB文档确认:对二维矩阵,A&#39;确实是共轭转置,非共轭转置要用transpose或permute。所以直接矩阵操作时推荐用.&#39;运算符。最后那个双重转置技巧挺有意思的,虽然实际用途不大,但能帮助理解图像操作的矩阵本质,可以作为知识点补充。用户可能是学生做图像处理作业,这类小技巧能增加报告亮点。</think> 在MATLAB中对图像进行转置操作(行列互换)主要有三种方法,以下为详细实现及对比分析: ### 方法一:使用矩阵转置运算符(`.&#39;`) ```matlab % 读取图像(支持彩色/灰度图) I = imread(&#39;your_image.jpg&#39;); % 转置操作(对每个颜色通道分别转置) transposed_I = permute(I, [2 1 3]); % 或简写为:transposed_I = I.&#39;; % 若为灰度图可直接用单引号转置 % 显示结果 subplot(1,2,1), imshow(I), title(&#39;原图&#39;) subplot(1,2,2), imshow(transposed_I), title(&#39;转置图像&#39;) ``` **原理** 图像本质是三维矩阵(行×列×颜色通道),`permute(I, [2 1 3])`将行、列维度互换,通道维度不变。此方法直接操作像素坐标 $(x,y)$ 互换[^4]。 --- ### 方法二:使用仿射变换(推荐处理几何变形) ```matlab % 定义转置变换矩阵 T = affine2d([0 1 0; 1 0 0; 0 0 1]); % 应用变换(自动处理边缘插值) transposed_I = imwarp(I, T); % 可视化结果同上 ``` **优势** 通过变换矩阵 $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ 实现坐标映射:$x_{new} = y_{old}$, $y_{new} = x_{old}$,支持高级几何变换链式操作[^2]。 --- ### 方法三:双循环像素操作(仅教学演示,效率低) ```matlab [rows, cols, ch] = size(I); transposed_I = zeros(cols, rows, ch, &#39;uint8&#39;); % 预分配内存 for c = 1:ch for y = 1:cols for x = 1:rows transposed_I(y, x, c) = I(x, y, c); % (x,y)坐标互换 end end end ``` **局限** 三层循环导致计算效率低下(时间复杂度 $O(n^3)$),实际工程中应避免使用[^4]。 --- ### 效果对比 | 方法 | 速度 | 支持插值 | 多通道兼容性 | 适用场景 | |------------|--------|----------|--------------|------------------| | 矩阵转置 | ★★★★☆ | 否 | 需手动处理 | 简单转置 | | 仿射变换 | ★★★☆☆ | 是 | 自动支持 | 复杂变换组合 | | 像素循环 | ★☆☆☆☆ | 否 | 需手动处理 | 教学演示 | > ⚠️ **注意事项** > 1. 彩色图像(RGB)需确保对**所有通道**进行转置[^3] > 2. 直接转置可能导致图像宽高比变化,需调整显示窗口 > 3. 特殊技巧:连续两次转置可还原原图($ (A^T)^T = A $)[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值