基于java的分布式爬虫

分类

分布式网络爬虫包含多个爬虫,每个爬虫需要完成的任务和单个的爬行器类似,它们从互联网上下载网页,并把网页保存在本地的磁盘,从中抽取URL并沿着这些URL的指向继续爬行。由于并行爬行器需要分割下载任务,可能爬虫会将自己抽取的URL发送给其他爬虫。这些爬虫可能分布在同一个局域网之中,或者分散在不同的地理位置。

根据爬虫的分散程度不同,可以把分布式爬行器分成以下两大类:

1、基于局域网分布式网络爬虫:这种分布式爬行器的所有爬虫在同一个局域网里运行,通过高速的网络连接相互通信。这些爬虫通过同一个网络去访问外部互联网,下载网页,所有的网络负载都集中在他们所在的那个局域网的出口上。由于局域网的带宽较高,爬虫之间的通信的效率能够得到保证;但是网络出口的总带宽上限是固定的,爬虫的数量会受到局域网出口带宽的限制。

2、基于广域网分布式网络爬虫:当并行爬行器的爬虫分别运行在不同地理位置(或网络位置),我们称这种并行爬行器为分布式爬行器。例如,分布式爬行器的爬虫可能位于中国,日本,和美国,分别负责下载这三地的网页;或者位于CHINANET,CERNET,CEINET,分别负责下载这三个网络的中的网页。分布式爬行器的优势在于可以子在一定程度上分散网络流量,减小网络出口的负载。如果爬虫分布在不同的地理位置(或网络位置),需要间隔多长时间进行一次相互通信就成为了一个值得考虑的问题。爬虫之间的通讯带宽可能是有限的,通常需要通过互联网进行通信。

大型分布式网络爬虫体系结构图

image

分布式网络爬虫是一项十分复杂系统。需要考虑很多方面因素。性能可以说是它这重要的指标。当然硬件层面的资源也是必须的。

架构

下面是项目的总体架构,第一个版本基于此方案来做。

上面的web层包括:控制台、基本权限、监控展示等,还可以根据需要再一步进行扩展。

核心层由控制者统一调度,将任务发给工人队列中的工人进行爬取操作。各个结点动态的向监控模块发送模块状态等信息,统一由展示层展示。

0.1版本架构图

项目目标

众推,开源版的今日头条!

基于hadoop思维的分布式网络爬虫。

目前已经将fourinone、jeesite、webmagic整合进来,并且进一步进行改进。想最终做成一个基于设计器的动态可配置的分布式爬虫系统,这个是第一阶段的目标。

项目目前情况

目前项目进展情况:

1、sourceer,可以接入多种数据源,接口已经定义(加入builder封装,可以使用简单爬虫)。

2、web架构工程(web工程上传并测试成功,权限、基础框架改造,导入等已经录成视频,删除activiti,删除cms部分)。

3、分布式框架研究(分布式项目分包,添加部分注释,测试单机单工人爬取)。

4、插件化整合。

5、文章等各种去重方式及算法(目前已实现bloomfilter,指纹算法去重,已经实现simhash,分词算法(ansj))。

6、分类器测试(bayes,文本分类单机测试成功)。

项目地址:

(分布式爬虫)http://git.oschina.net/zongtui/zongtui-webcrawler

(去重过滤器)https://git.oschina.net/zongtui/zongtui-filter

(文本分类器)https://git.oschina.net/zongtui/zongtui-classifier

(文档目录)https://git.oschina.net/zongtui/zongtui-doc

项目界面:

启动jetty,目前皮肤暂时还未换。

image

总结

目前项目正在进一步完善当中,希望能得到你更多的意见!

转载于:https://www.cnblogs.com/skyme/p/4440831.html

Cola是一个分布式爬虫框架,用户只需编写几个特定的函数,而无需关注分布式运行的细节。任务会自动分配到多台机器上,整个过程对用户是透明的。pip install pyyaml安装下载或者用git clone源码,假设在目录/to/pth/cola,将该路径添加到Python path中。一种简单的方法是在site-packages中添加pth文件。site-packages因系统而异,如果是windows,假设python 装在C:\python27,那么就是C:\python27\Lib\site-packages;如果是linux,那么应该是/usr/local /lib/pythonX.X/dist-packages。在site-packages下新建一个cola.pth文件,里面写上路径:/to/path/cola。Cola目前自带了若干个爬虫,在项目根目录下的contrib中。下面就wiki为例,分别说明如何在单机和分布式环境下运行。依赖无论是维基百科还是新浪微博的实现,数据都存放在MongoDB中,所以要确保MongoDB的安装。在wiki下的wiki.yaml和weibo下的weibo.yaml中可以配置MongoDB的主机和端口。维基百科和新浪微博实现依赖于下面的几个包:mechanizepython-dateutilBeautifulSoup4mongoenginersa(仅新浪微博需要)可以使用pip或者easy_install来安装。单机模式单机模式非常简单,只需运行contrib/wiki/__init__.py即可。cd /to/path/cola/contrib/wiki python __init__.py要运行新浪微博的爬虫,需要在weibo.yaml中配置登录的用户名和密码。这里要注意,要保证这个用户名和密码在登录时不需要验证码。停止则需运行stop.py,注意不能通过直接杀死进程来停止,否则会导致cola非法关闭。 如果非法关闭,确保cola不在运行的情况下,则可以运行stop.py来恢复。但无论如何,都不推荐非法关闭,否则可能遇到不可预知的错误。python stop.py分布式模式首先需要启动cola master和cola workers。分别运行根目录下bin中的start_master.py和start_worker.py启动cola master:cd /to/path/cola python bin/start_master.py --data /my/path/data如果不指定--data,那么数据文件会放置在项目根目录下的data文件夹中。启动cola worker:python bin/start_worker.py --master <master ip address> --data /my/path/data--data选项同master。如果不指定master,会询问是否连接到本机master,输入yes连接。最后使用bin下的coca.py来运行指定的Cola job:python bin/coca.py -m <master ip address> -runLocalJob /to/path/cola/contrib/wiki-runLocalJob选项是要运行的job所在文件夹的绝对路径。输入命令后,该job会被提交到Cola集群来运行。停止Cola Job或集群停止整个集群,则可以运行:python bin/coca.py -m <master ip address> -stopAll而停止一个Job,则需要查询得到Job的名称:python bin/coca.py -m <master ip address> -showRunningJobsNames得到名称后,再运行:python bin/coca.py -m <master ip address> -stopRunningJobByName <job name>基于Cola实现的爬虫基于Cola实现的爬虫位于contrib/目录下。目前实现了四个爬虫:wiki:维基百科。weibo:新浪微博爬虫。从初始用户出发,然后是其关注和粉丝,依次类推,抓取指定个数的新浪微博用户的微博、个人信息、关注和粉丝。其中,用户微博只获取了内容、赞的个数、转发和评论的个数等等,而没有具体去获取此微博被转发和评论的内容。generic(unstable):通用爬虫,只需配置,而无需修改代码。目前Cola实现了一个抽取器(cola/core /extractor),能够从网页正文中自动抽取主要内容,即去除类似边栏和底脚等内容。但是,此抽取器目前准确度还不够,效率也不够高,所以需要谨慎 使用。weibosearch(unstable):新浪微博搜索的爬虫。这个爬虫使用 cola.core.opener.SpynnerOpener,基于spynner实现了一个Opener能够执行JavaScript和Ajax代 码。目前这个爬虫存在的问题是:新浪微博可能会将其识别成机器人,因此有可能会让输入验证码。wiki和weibo之前有所提及。主要说明generic和weibosearch。对于generic来说,主要要修改的就是配置文件:job:   patterns:     - regex: http://blog.sina.com.cn/$       name: home       store: no       extract: no     - regex: http://blog.sina.com.cn/s/blog_.       name: article       store: yes       extract: yes其中,regex表示要匹配的url的正则表达式;name是正则匹配的名称;store为yes时是存储这个网页,no为不存储;extract表示是否自动抽取网页正文,只有当store为yes的时候,extract才有作用。对于weibosearch,其使用了spynner来执行JavaScript和Ajax代码。所以需要确保以下依赖的安装:PyQt4(>=4.4.3)spynner如果你觉得可以基于cola实现一个比较通用的第三方爬虫,比如说腾讯微博等等,欢迎将此爬虫提交到contrib/中。编写自定义Cola Job见wiki编写自定义Cola Job。架构和原理在Cola集群里,当一个任务被提交的时候,Cola Master和Worker会分别启动JobMaster和JobWorker。对于一个Cola Job,当JobWorker启动完成后,会通知JobMaster,JobMaster等待所有JobWorker启动完成后开始运行Job。在一个 Cola Job启动时,会启动一个消息队列(Message Queue,主要操作是put和get,worker抓取到的对象会被put到队列中,而要抓取新的对象时,只要从队列中取即可),每个 JobWorker上都存在消息队列节点,同时会有一个去重模块(bloom filter实现)。Cola还不够稳定,目前会处于持续改进的状态。且Cola还没有在较大规模的集群上测试,但是接下来我会把Cola应用到新项目中,并逐步完善。也希望大家也能给我反馈,并帮助改进。Roadmap0.1版本正式推出前不会再增加新的功能了,主要目标让Cola更加稳定,并且提高cola/core/extractor的性能和精确度,完善contrib/generic和contrib/weibosearch。0.2版本计划:实现一个web接口,可以查看运行的cola job以及运行情况简化安装,支持easy_install或者pip安装。增加解决依赖库安装的机制。0.3版本计划:增加一个统一持久化抽象,支持保存到关系型数据库,MongoDB,文件系统,HDFS等等。0.4版本计划:支持Python 3 标签:Cola
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值