
机器学习
文章平均质量分 96
奥特曼超人Dujinyang
关注官方 Python2048 公众号,位于深圳IT圈、游戏圈。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
丹爷:用Python打造属于你的AI编程助理(完整实战 + 核心原理剖析)
1)通过ast模块扫描项目文件;2)利用LangChain和FAISS实现代码语义搜索;3)基于transformers生成函数注释;4)集成静态分析工具检查代码规范。该助手可私有化部署,专为开发者理解个人项目代码而设计,相比通用AI工具能提供更精准的上下文相关帮助。文章提供了完整实现代码,包括项目扫描器、代码索引器、注释生成器等核心组件,开发者可将其集成到命令行或IDE中使用。原创 2025-07-22 20:12:15 · 751 阅读 · 0 评论 -
Claude:AI 尝试创建Android工程并自动修复
本文记录了使用Claude AI创建Android工程并自动修复问题的全过程。作者通过指令让AI创建包含WebView的Android工程,观察到AI能自动处理Gradle配置、权限和SDK版本等文件。当工程出现错误时,AI可帮助修正Gradle版本和SDK引用问题,但存在对插件兼容性判断不足、可能生成过时代码等局限。文章总结了AI在快速原型开发、新手学习和批量配置自动化等场景的应用价值,同时指出API调用成本问题(每次约几分钱)。最后提醒线上项目修改前需做好版本控制标记。原创 2025-07-22 19:10:39 · 890 阅读 · 0 评论 -
丹爷解密:python如何让AI自我训练游戏模型
丹爷解密,游戏模型中如何让AI自我训练?python如何处理游戏模型的呢?有一天,他们会不会成为主宰?原创 2025-04-03 17:15:21 · 1167 阅读 · 0 评论 -
深度学习魔法入门:周董与丹爷的成长冒险之旅
人工智能AI,某天,周董和他的好朋友丹爷正在咖啡馆里聊天,周董苦恼地说道:“我最近听说深度学习可以做很多神奇的事,比如图像识别、语音合成、甚至自动驾驶,但我就是搞不懂它到底是怎么回事,感觉它像魔法一样神秘!”🧙♂️丹爷一听,笑了笑:“别担心,深度学习确实像魔法一样,但只要你掌握了它,你就能召唤各种神奇的能力!只不过,这个魔法的入门,可能会让你摔一跤。”👠周董疑惑地看着丹爷:“摔跤?那我是不是要先看个魔法入门书籍?”📚丹爷眯了眯眼:“不必,今天我就亲自给你传授深度学习的‘魔法’!你准备好了吗?”⚡。原创 2025-03-28 17:41:14 · 1273 阅读 · 0 评论 -
Python 与 C++ 结合加速 AI 计算:性能优化与实战案例 [特殊字符]
在人工智能的时代,计算的速度至关重要。Python 作为一门灵活的脚本语言,在 AI 和深度学习领域表现出色,尤其得益于它丰富的库和框架,如 TensorFlow 和 PyTorch。然而,当面对计算密集型任务时,Python 的执行速度往往显得力不从心。C++ 以其高效的执行速度,成为了处理底层计算、优化算法的首选语言。那么,如何将 Python 的易用性和 C++ 的高性能优势结合起来,提升 AI 计算的效率呢?原创 2025-03-28 17:10:08 · 1134 阅读 · 0 评论 -
C++中的数据结构:程序员的“工具箱”与吐槽大会
C++数据结构是程序员的“工具箱”,合理使用它们能让代码像瑞士军刀一样高效强大。记住:• 数组像会计,链表像社交达人,哈希表像相亲对象(找不到就自己扛)。• 选择容器前问三遍:“我要随机访问吗?需要频繁插入吗?内存够吗?” 💭《人工智能AI的优化与实际应用(Optimization)》《AI中涉及到的算法汇总(精华)》《AI人工智能如何改变我们的生活:不仅是科幻》《别让黑客偷走你的“网银密码”——网络安全那些事儿!《DU网络安全意识指南》《服务器虚拟化:技术概述与应用》原创 2025-03-10 15:30:28 · 698 阅读 · 0 评论 -
自然语言处理之难与解:论AI技术之困境与破解
自然语言处理(NLP)是人工智能的重要领域,旨在使计算机理解和生成自然语言。NLP面临的挑战主要包括语言的多义性、语法结构的复杂性、情感分析的微妙性以及歧义消解的问题。为了解决这些问题,现代技术采用了深度学习模型,如BERT和GPT,通过上下文信息来准确理解词语的含义,使用图神经网络来解析句法关系,并运用卷积神经网络(CNN)与循环神经网络(RNN)进行情感分析。随着技术的不断进步,NLP的精确度和应用范围不断拓展,机器翻译、语音识别、情感分析等领域。算法和模型dujinyang杜锦阳原创 2025-02-19 15:53:16 · 952 阅读 · 0 评论 -
人工智能AI的优化与实际应用(Optimization)
优化在机器学习和人工智能中起着核心作用。通过使用不同的优化算法,我们能够在复杂的模型训练、决策问题以及资源分配问题中寻找最优解。然而,优化过程充满了挑战,如局部最优、计算复杂度、学习率选择和高维数据等问题。解决这些问题需要结合现代优化方法、正则化技术、启发式算法和高效的计算框架,以确保优化过程的高效和准确。在未来,随着计算能力的提高和算法的不断发展,优化问题的解决将变得更加智能化和高效。原创 2025-01-21 11:13:45 · 869 阅读 · 0 评论 -
AI中涉及到的算法汇总(精华)
在人工智能(AI)领域,涉及的算法种类非常多,涵盖了不同的任务和应用。优化技术在AI中的应用是广泛的,无论是在机器学习模型的训练、深度学习中的参数调整,还是在约束条件下的资源调度、路径规划等实际问题中,优化算法都扮演着至关重要的角色。选取合适的优化方法能够显著提升模型的性能和效率。杜锦阳dujinyang原创 2025-01-21 10:38:52 · 2175 阅读 · 0 评论 -
微软的深度学习大模型:创新与探索
微软的深度学习大模型在技术创新和实际应用上展现出强大潜力,未来随着计算能力的提升和算法优化,微软的大模型必将在人工智能领域继续发挥重要作用,并深刻影响多个行业的应用和发展。感兴趣的后续可以关注专栏或者公众号 —《黑客的世界》作者:奥特曼超人Dujinyang来源:CSDN版权声明:本文为博主杜锦阳原创文章,转载请附上博文链接!原创 2024-12-26 16:06:38 · 1087 阅读 · 0 评论 -
深度学习领域的里程碑:TensorFlow的经典论文综述与展望
大家回顾下TensorFlow的算法后,再来看看今天的记录。深度学习技术的迅速发展推动了人工智能领域的革新和进步。TensorFlow框架作为其中一个关键的推动者,为深度学习算法的研究、开发和应用提供了强大的支持。本论文将通过回顾TensorFlow框架下产生的经典论文,揭示其中的故事情节,并探讨其对深度学习领域的贡献与影响。TensorFlow是由Google Brain团队于2015年发布的开源深度学习框架。其以计算图的形式表示计算过程,通过数据流图进行高效的计算和优化。原创 2024-03-01 18:24:11 · 1570 阅读 · 0 评论 -
机器学习知识点(人工智能篇)
AI(Artificial Intelligence),即人工智能。人工智能领域的研究包括机器人、语音识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。奥特曼超人转载 2017-07-17 17:11:01 · 15889 阅读 · 0 评论