题目描述
小 Z 打算在国庆假期期间搭乘旅游巴士去一处他向往已久的景点旅游。
旅游景点的地图共有 n 处地点,在这些地点之间连有 m 条道路。其中 1 号地点为景区入口,n 号地点为景区出口。我们把一天当中景区开门营业的时间记为 0 时刻,则从 0 时刻起,每间隔 k 单位时间便有一辆旅游巴士到达景区入口,同时有一辆旅游巴士从景区出口驶离景区。
所有道路均只能单向通行。对于每条道路,游客步行通过的用时均为恰好 1 单位时间。
小 Z 希望乘坐旅游巴士到达景区入口,并沿着自己选择的任意路径走到景区出口,再乘坐旅游巴士离开,这意味着他到达和离开景区的时间都必须是 k 的非负整数倍。由于节假日客流众多,小 Z 在旅游巴士离开景区前只想一直沿着景区道路移动,而不想在任何地点(包括景区入口和出口)或者道路上停留。
出发前,小 Z 忽然得知:景区采取了限制客流的方法,对于每条道路均设置了一个 “开放时间”ai,游客只有不早于 ai 时刻才能通过这条道路。
请帮助小 Z 设计一个旅游方案,使得他乘坐旅游巴士离开景区的时间尽量地早。
输入格式
输入的第一行包含 3 个正整数 n,m,k,表示旅游景点的地点数、道路数,以及旅游巴士的发车间隔。
输入的接下来 m 行,每行包含 3 个非负整数 ui,vi,ai,表示第 i 条道路从地点 ui 出发,到达地点 vi,道路的“开放时间”为 ai。
输出格式
输出一行,仅包含一个整数,表示小 Z 最早乘坐旅游巴士离开景区的时刻。如果不存在符合要求的旅游方案,输出 -1
。
输入输出样例
输入 #1复制
5 5 3 1 2 0 2 5 1 1 3 0 3 4 3 4 5 1
输出 #1复制
6
说明/提示
【样例 #1 解释】
小 Z 可以在 3 时刻到达景区入口,沿 1→3→4→5 的顺序走到景区出口,并在 6 时刻离开。
【样例 #2】
见附件中的 bus/bus2.in
与 bus/bus2.ans
。
【数据范围】
对于所有测试数据有:2≤n≤104,1≤m≤2×104,1≤k≤100,1≤ui,vi≤n,0≤ai≤106。
测试点编号 | n≤ | m≤ | k≤ | 特殊性质 |
---|---|---|---|---|
1∼2 | 10 | 15 | 100 | ai=0 |
3∼5 | 10 | 15 | 100 | 无 |
6∼7 | 104 | 2×104 | 1 | ai=0 |
8∼10 | 104 | 2×104 | 1 | 无 |
11∼13 | 104 | 2×104 | 100 | ai=0 |
14∼15 | 104 | 2×104 | 100 | ui≤vi |
16∼20 | 104 | 2×104 | 100 | 无 |
题目概述与分析
扑克牌问题是2024年CSP-J竞赛中的一道典型题目,考察选手对模拟算法和贪心策略的掌握。题目描述玩家有n张扑克牌,每张牌有一个点数,玩家可以执行两种操作:1) 移除任意一张牌;2) 移除两张点数相同的牌并获得1分。目标是最大化获得的分数。
解法一:哈希表统计法
算法思路
- 使用哈希表统计每种点数的出现次数
- 对于每种点数,计算能获得的最大分数
- 分数计算规则:每对牌得1分,剩余单牌可考虑移除
- 时间复杂度O(n),空间复杂度O(n)
#include <iostream>
#include <unordered_map>
using namespace std;
int main() {
int n;
cin >> n;
unordered_map<int, int> count;
for(int i = 0; i < n; i++) {
int num;
cin >> num;
count[num]++;
}
int score = 0;
for(auto &p : count) {
score += p.second / 2;
}
cout << score << endl;
return 0;
}
哈希表解法通过统计每种点数的出现次数,直接计算能组成的牌对数,简洁高效。
解法二:排序+贪心法
算法思路
- 先将所有牌按点数排序
- 遍历排序后的数组,统计连续相同点数的牌
- 每遇到两个相同点数的牌就计1分
- 时间复杂度O(nlogn),空间复杂度O(1)或O(n)
#include <vector>
#include <algorithm>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> cards(n);
for(int i = 0; i < n; i++) {
cin >> cards[i];
}
sort(cards.begin(), cards.end());
int score = 0;
for(int i = 1; i < n; i++) {
if(cards[i] == cards[i-1]) {
score++;
i++; // 跳过下一张牌
}
}
cout << score << endl;
return 0;
}
排序后贪心解法通过预处理数据,简化了配对过程,适合内存受限但时间允许的场景。
算法对比分析
方法 | 时间复杂度 | 空间复杂度 | 适用场景 |
---|---|---|---|
哈希表统计法 | O(n) | O(n) | 大数据量,追求速度 |
排序+贪心法 | O(nlogn) | O(1)或O(n) | 内存受限,允许排序 |
关键问题详解
配对策略优化
- 每对牌只能得1分,多余牌不影响结果
- 无需考虑移除单牌的顺序
- 统计每种点数的牌数后直接计算对数
边界情况处理
- 空输入或单张牌的情况
- 所有牌点数相同的情况
- 所有牌点数都不同的情况
- 大规模数据测试
性能优化建议
- 使用unordered_map替代map提高哈希表效率
- 输入输出使用快速IO方法
- 对于已知范围的小整数可使用数组替代哈希表
- 排序算法选择根据数据特点决定
数学原理分析
- 组合数学中的配对问题
- 鸽巢原理的应用
- 贪心算法的正确性证明
- 最优化子结构性质
常见错误分析
- 未考虑奇数张牌的情况
- 重复计算同一对牌
- 错误处理边界条件
- 选择不合适的容器导致性能下降
实际应用价值
这类问题在以下领域有实际应用:
- 资源分配优化
- 任务调度匹配
- 数据去重处理
- 库存管理优化
扩展思考
- 如果每对牌得分不同如何处理?
- 如果允许三张牌组合得分会怎样?
- 如果牌有花色和点数双重属性?
- 如果操作有顺序限制?
总结
两种解法各有优势:哈希表法直观高效,适合一般情况;排序贪心法在特定条件下更节省空间。理解这类问题的本质对培养算法思维很有帮助。建议先掌握哈希表解法,再理解排序方法的巧妙之处。