大模型微调训练可视化关键指标详解

在这里插入图片描述

一、核心指标含义及解读

1. Epoch(训练轮次)
  • 定义:完整遍历一次训练数据集的迭代过程
  • 监控要点
    • 理想曲线:随着epoch增加,loss应持续下降
    • 异常情况
      • 早停点(eval loss不再下降)
      • 过拟合点(train loss↓但eval loss↑)
  • 建议范围:LLM微调通常3-15轮(数据量决定)
2. Train Loss(训练损失)
  • 计算公式
    $ \text{Loss} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(f(x_i), y_i) $
  • 变化解读
    • 正常下降:模型学习训练数据模式
    • 震荡波动:学习率过大/batch size过小
    • 平台停滞:模型容量不足/需要调整优化器
  • 典型曲线
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值