kvm GPU直通/GPU透传 之修改Windows虚拟机分辨率

本文介绍了如何在Linux Host系统中,使用GPU直通技术将NVIDIA GTX显卡传递给Windows虚拟机,并解决直通后虚拟机分辨率过小的问题。通过在虚拟机启动时进入BIOS,修改分辨率设置为1920*1080,成功实现了GPU透传后的分辨率调整。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

为了方便对服务器进行自动管理,我们需要对硬件进行虚拟化。对于显卡而言,Nvidia有专门支持GPU虚拟化的显卡,比如GRID GPU系列。以NVIDIA GRID K2为例,显存8GB,可虚拟出2块GPU。

对于GTX系列的显卡,如果Host主机为linux系统,想将显卡给虚拟机(windows或者linux)使用,则需要用到GPU透传(GPU passthrough)技术。目前这方面的资料非常少,断断续续摸索了两周,titanX显卡透传终于成功了。

后面发现GPU透传后主机的分辨率很小,又陆续摸索,最终把分辨率改成功了😊

感兴趣的可以站内私信我或直接打开链接显卡虚拟化方案之GPU透传(三)实战篇

    |
    |
    |
    |
    |
    \ /

 

### 如何在虚拟机中配置或使用 GPU #### 背景介绍 随着虚拟化技术的发展,越来越多的应用程序需要利用 GPU 的强大计算能力来加速处理任务。然而,在虚拟环境中实现 GPU 支持并非易事,它涉及硬件兼容性、驱动安装以及特定的虚拟化平台支持等问题。 --- #### 宿主机环境准备 为了使虚拟机能有效访问并使用 GPU,宿主机需满足以下条件: 1. **启用 VT-d 或 AMD-Vi 技术** - 确保物理服务器 BIOS 中启用了 Intel VT-d(Intel 平台)或 AMD-Vi(AMD 平台)。这些功能允许设备直通虚拟机[^1]。 2. **安装必要的软件和服务** - 安装 `QEMU` 和 `KVM` 作为基础虚拟化框架。 - 配置 `libvirt` 来管理 KVM 虚拟机实例。 - 如果计划通过远程桌面连接操作,则需要设置 VNC 或 SPICE 协议的支持服务。 3. **加载 VFIO 模块** - 执行命令以加载 VFIO 内核模块,这是实现 PCI 设备的关键组件: ```bash modprobe vfio-pci ``` 4. **禁用显卡自带驱动** - 对于要分配给 VM 的独立显卡,应先将其原生驱动卸载或者屏蔽掉,防止被宿主机占用资源。可以通过修改 GRUB 参数完成此操作: ```bash echo "blacklist nvidia" | sudo tee /etc/modprobe.d/blacklist-nvidia.conf update-grub reboot ``` --- #### 创建支持 GPU虚拟机 1. **定义 XML 文件描述新虚拟机结构** 下面是一个简单的 libvirt 基础模板示例,其中包含了对 NVIDIA 显卡的绑定声明部分: ```xml <domain type='kvm'> <!-- ... --> <devices> <hostdev mode='subsystem' type='pci' managed='yes'> <source> <address domain='0x0000' bus='0x81' slot='0x00' function='0'/> </source> </hostdev> </devices> </domain> ``` 上述代码片段中的 `<address>` 字段指定了具体哪一块 PCIe 插槽上的 GPU 将会被递至目标虚拟客户操作系统内运行。 2. **导入自定义域定义文件** 利用 virt-install 工具或者其他图形界面工具读取上述 xml 文档内容,并按照指示逐步建立新的容器实体对象。 3. **验证 GPU 是否成功挂接** 登录已启动完毕的新建虚拟机之后,可以尝试执行如下指令查看当前可用显示适配器列表及其属性详情: ```bash lspci | grep VGA dmesg | grep pci lsmod | grep vfio ``` --- #### 客户端驱动安装与测试 即使完成了前面所有的准备工作,如果缺少针对所选品牌型号开发出来的专有图形渲染引擎库的话,仍然无法正常发挥其应有的性能表现水平。因此还需要进一步完成以下几个方面的调整优化工作流程: 1. **获取最新版官方推荐版本号对应的二进制包形式分发下来的 Linux Driver Software Suite (NVIDIA-Linux-x86_64-.run)**. 2. **解压压缩档案后依照提示一步步跟随向导指引直至结束为止即可**. 最后一步就是编写一段小程序用来检测 OpenCL/CUDA API 函数调用返回状态码是否符合预期结果从而判断整个部署过程是否有误发生异常情况存在风险隐患待解决修复完善之处[^2]. ```python import pycuda.driver as drv drv.init() print("%d device(s) found." % drv.Device.count()) for ordinal in range(drv.Device.count()): dev = drv.Device(ordinal) print(dev.name(), dev.total_memory()//(1024**2), 'MB') ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

upDiff

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值