- 博客(2)
- 收藏
- 关注
原创 《NVIDIA自动驾驶安全报告》读后感
在加州圣何塞的NVIDIA实验室里,工程师们正在训练一个名为Hydra-MDP的超级模型。这个包含1.2万亿参数的多智能体系统,能模拟东京涩谷十字路口10万辆车的交互行为。通过端到端学习,系统不仅预测车辆轨迹,更能捕捉行人微表情、自行车把手转向等细节,将突发状况的预判准确率提升至92%。这种进化能力延伸至量产车端。每辆搭载DRIVE平台的车都像生物体般持续进化:通过每月一次的OTA更新,DNN模型数量从交付时的20个增长到三年后的150+,覆盖的驾驶场景每年扩展37%。
2025-04-25 23:08:27
1487
原创 Datawhale Al春训营 新能源赛道 得分0.3baseline
观测上步代码结果可知气象数据中新能源场站每个小时的数据维度为 2 (11x11),但构建模型对于单个时间点的单个特征只需要一个 标量 即可,因此我们把 11x11 个格点的数据取均值,从而将二维数据转为单一的标量值。且主办方提供的气象数据时间精度为h,而发电功率精度为15min,即给我们一天的数据有24条天气数据与96(24*4)条功率数据,因此将功率数据中每四条数据只保留一条。特征工程也好,数据清洗也罢,都是为最终的模型来服务的,模型的建立和调参决定了最终的结果。K折交叉验证会把样本数据随机的分成K份;
2025-04-19 15:44:26
515
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人