若依增加新模块

一、后端

1. 新建module模块,选择maven项目(我的子module名为MyModule)。

在新module中的pom文件中加入依赖:

    <dependencies>
        <dependency>
            <groupId>com.dlz</groupId>
            <artifactId>myadmin-framework</artifactId>
        </dependency>
    </dependencies>

2. 在整个项目的父的pom文件中添加依赖:

            <dependency>
                <groupId>com.dlz</groupId>
                <artifactId>MyModule</artifactId>
                <version>${myadmin.version}</version>
            </dependency>

3. 在ruoyi-admin的pom文件中添加依赖

        <dependency>
            <groupId>com.dlz</groupId>
            <artifactId>MyModule</artifactId>
        </dependency>

完成!

二、建表

打开Navicat,建自己的表。随便建了一个my_books表。

注:主键必须选择自动递增,后面那四个似乎是ruoyi自带的,不管建什么表加上就对了。

三、启动ruoyi,登入管理员

进入系统工具/代码生成

点击导入,就能看到刚才创建的my_books表,选中确定

编辑该表,首先检查一下实体类名称是否合适。

 字段信息根据需要修改,例如book_id通常是不能给用户插入的,因此,将√去掉,但是可以根据id查询,因此把查询勾上。

生成信息

这里需要注意三个地方:

生成包路径:就是这个生成的java包的路径,通常域名就行,由于我们只是建立菜单,因此直接com.ddd就行,如果你把多个子功能都放到newmodule里面,可能需要加上com.ddd.aaa之类的。

生成模块名:vue中模块的名称,实际上就是文件夹路径

生成功能名:就是导航栏显示的名称

上级菜单:由于我们不想这个功能在某个模块的折叠子目录下,所以不需要选,空着就行。

3. 提交后点击生成代码。

4. 会下载一个zip包, 解压后结构如下:

直接将java和resources复制到你的新模块下

再将vue文件夹下的api和views目录下的booksAdmin拷贝到vue项目的对应位置。

最后将booksMenu.sql文件在数据库里面执行一下。

三. 重新启动前端、后端

发现没找到我们的图书管理

这是因为我们没选上级目录,自动分配到了系统工具里面

我们进入系统管理/菜单管理,展开系统工具,找到了我们的图书管理,点击修改,将上级菜单由“系统工具”改为“主目录”。

再刷新一下,图书管理就出来啦!

要是对这个显示顺序不满意,可以再上一步的“显示排序”中更改顺序。

如果你想建立一个目录,并将子功能放到这个目录下那么继续看:

第一、二步骤都一样,第二步这次建了一个book_reader表

改动从第三步开始

1. 进入系统管理/菜单管理

增加一个目录

路由地址:随便写,不重复就行(后面有验证为什么可以随便写)

 建好后刷新,即可看到新模块啦!当然现在点击还是什么都没有的。

还是和之前一样,导入book_reader表,不同的是,生成信息部分的上级菜单要改成刚刚创建的子模块

生成代码,按照步骤拷贝代码,执行数据库文件,然后重新启动前端,后端,成功!

注:

通过数据库中的sys_menu表可以看出存在一些问题

前端发送的请求url

 后端

测试:

(1)如果把生成代码的bookreader改成bookreader111,BookReaderAdmin改为BookReaderAdmin222

前端的请求url会变成:

后端也相应变化。

把读者管理目录的路由地址改为bookreader333,系统依旧正常运行,只是数据库sys_menu表中的发生了变化

可能这个生成模块名就是父路由(与读者管理目录中设置的路由无关),生成业务名就是子路由。

### 使用 AutoGPTQ 库量化 Transformer 模型 为了使用 `AutoGPTQ` 对 Transformer 模型进行量化,可以遵循如下方法: 安装所需的依赖包是必要的操作。通过 pip 安装 `auto-gptq` 可以获取最版本的库。 ```bash pip install auto-gptq ``` 加载预训练模型并应用 GPTQ (General-Purpose Tensor Quantization) 技术来减少模型大小和加速推理过程是一个常见的流程。下面展示了如何利用 `AutoGPTQForCausalLM` 类来进行这一工作[^1]。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model_name_or_path = "facebook/opt-350m" quantized_model_dir = "./quantized_model" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) # 加载已经量化的模型或者创建一个的量化器对象用于量化未压缩过的模型 gptq_model = AutoGPTQForCausalLM.from_pretrained(quantized_model_dir, model=model, tokenizer=tokenizer) ``` 对于那些希望进一步优化其部署环境中的模型性能的人来说,`AutoGPTQ` 提供了多种配置选项来自定义量化参数,比如位宽(bit-width),这有助于平衡精度损失与运行效率之间的关系。 #### 注意事项 当处理特定硬件平台上的部署时,建议查阅官方文档以获得最佳实践指导和支持信息。此外,在实际应用场景之前应该充分测试经过量化的模型以确保满足预期的质量标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值