多智能体强化学习-COMA

COMA(Counterfactual Multi-Agent Policy Gradients)是一种用于多智能体强化学习的方法,旨在解决信用分配问题。通过集中式批评家计算反事实基线,比较当前操作与默认操作的价值差异,有效地进行策略优化。这种方法在不增加模拟次数的情况下,提升了性能和训练效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多智能体强化学习-COMA

论文全称:Counterfactual Multi-Agent Policy Gradients
论文地址:https://arxiv.org/abs/1705.08926v1

摘要

协作多智能体系统可以很自然地用于建模许多现实世界的问题,例如网络分组路由或自主车辆的协调。因此,需要新的强化学习方法来有效地学习这种系统的分散策略。为此,提出了一种新的多智能体参与者批评方法,称为反事实多智能体策略梯度(COMA)。COMA使用一个集中的批评家来估计Q函数,并使用分散的参与者来优化代理的策略。此外,为了解决多代理信用分配的挑战,它使用了一个反事实的基线,将单个代理的行为边缘化,同时保持其他代理的行为不变。COMA还使用了一种临界表示法,允许在一次向前传球中有效地计算反事实基线。

一、介绍

多智能体学习中存在的问题有:
1)智能体的联合动作空间随着智能体的数量呈指数级增长。
2)多智能体信用分配。
为了解决上面的问题,提出了COMA。

二、COMA方法

COMA三个主要思想:1)批评家的中心化,2)反事实基线的使用,3)允许对基线进行有效评估的批评家表示法的使用。

2.1 集中批评家

COMA使用了一个集中的批评家。批评只在学习中使用,而在执行过程中只需要演员。由于学习是集中的,因此可以使用一个集中的批评家,即以联合行动和所有可用的状态信息为条件,而每个代理人的政策条件仅限于其自身的行动观察历史。实现了参数共享。<

异构多智能体强化学习(Hetero-MARL)是指在多智能体系统中,每个智能体具有不同的能力和行为策略,通过强化学习算法进行训练和协作,以完成共同的任务或目标。与同构多智能体强化学习(每个智能体的能力和策略相同)相比,异构多智能体强化学习更具挑战性,但也更接近现实世界的应用场景。 以下是异构多智能体强化学习的一些关键特点和应用: ### 关键特点 1. **异构性**:智能体具有不同的能力和策略,可能包括不同的传感器、执行器或决策机制。 2. **协作与竞争**:智能体之间可能需要协作完成任务,也可能存在竞争关系。 3. **通信与协调**:智能体之间需要有效的通信和协调机制,以确保任务的成功完成。 4. **可扩展性**:算法需要能够在智能体数量增加时保持高效和稳定。 ### 应用场景 1. **机器人团队协作**:多个机器人协同完成任务,如物流、救援和制造等。 2. **自动驾驶**:多辆自动驾驶车辆在道路上协同行驶,避免碰撞并优化交通流量。 3. **游戏AI**:在多人游戏中,智能体需要与人类玩家或其他智能体进行互动和竞争。 4. **智能电网**:多个能源管理设备协同工作,优化能源分配和使用。 ### 主要挑战 1. **非平稳性**:由于智能体之间的互动,环境的动态变化导致策略的不稳定性。 2. **部分可观察性**:智能体通常只能观察到部分环境状态,需要进行信息共享和推理。 3. **计算复杂度**:随着智能体数量的增加,策略空间的维度急剧增加,导致计算复杂度高。 ### 常用算法 1. **MADDPG(Multi-Agent Deep Deterministic Policy Gradient)**:一种基于深度学习的策略梯度算法,适用于连续动作空间。 2. **QMIX**:一种值分解方法,将联合动作值函数分解为单个智能体值函数的组合。 3. **COMA(Counterfactual Multi-Agent)**:一种反事实策略梯度算法,考虑智能体之间的相互影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值