自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 CU-Net --图像融合

本文提出CU-Net网络,基于多模态卷积稀疏编码(MCSC)模型,通过三个核心模块实现多模态图像处理:独特特征提取模块(UFEM)分离各模态图像特有信息,共同特征保存模块(CFPM)保留跨模态共享特征,图像重建模块(IRM)综合独特和共同特征进行重建。网络采用学习到的卷积稀疏编码(LCSC)算法迭代求解特征响应,将优化过程转化为可解释的网络架构。与传统方法相比,CU-Net在图像级别建模跨模态关系,能更好地捕捉全局相关性,且模块化设计使其具有任务适应性。实验表明该架构在多模态图像恢复与融合任务中具有优势。

2025-07-09 13:31:23 803

原创 FusionMamba--图像融合

FusionMamba:基于状态空间模型的动态特征增强多模态图像融合方法 FusionMamba提出了一种创新的多模态图像融合框架,首次将状态空间模型(Mamba)引入图像融合领域。该模型通过动态视觉状态空间模块(DVSS)高效提取全局和局部特征,结合动态特征增强模块(DFEM)强化纹理细节感知,并通过跨模态融合Mamba模块(CMFM)探索模态间相关性。实验表明,该方法在红外-可见光融合及医学图像融合任务中表现优异,显著提升了目标识别和细节保留能力。网络采用UNet架构,结合高效通道注意力机制,在保持线性

2025-07-09 13:27:38 802

原创 Fusion-GAN--图像融合

Fusion-GAN是首个利用生成对抗网络(GAN)实现红外与可见光图像融合的模型。该模型通过端到端方式生成融合图像,省略了传统手工设计融合规则的步骤。生成器采用5层卷积结构,保留红外图像的温度信息和可见光图像的纹理细节;判别器则通过对抗训练提升融合质量。实验采用TNO数据集,将图像切分为64,381个patch进行训练。结果表明,Fusion-GAN能有效融合不同分辨率的图像,但存在融合图像整体发灰、对比度不足的问题。模型采用最小平方损失函数,结合对抗损失和内容损失进行优化,在保留红外显著目标的同时增强了

2025-07-06 14:40:46 823

原创 SWIN-Fusion---图像融合

SwinFusion是一种基于Swin Transformer的通用图像融合框架,通过跨域远程学习实现多模态图像的有效融合。该方法包含三个关键模块:特征提取模块使用Swin Transformer层获取全局特征;注意力引导的跨域融合模块(ACFM)通过自注意力和跨域注意力机制整合互补信息;特征重建模块将融合特征映射回图像空间。实验结果表明,该方法在多项评价指标上优于现有方法,能够有效保留源图像的结构、纹理和强度信息。创新性地采用Swin Transformer处理任意尺寸图像,为多场景图像融合提供了统一解决

2025-07-06 14:26:20 613

原创 AI城市挑战赛2022的多摄像头车辆跟踪系统---论文阅读

多目标多摄像机跟踪是智能交通系统的一项基本任务。2022年AI城市挑战赛第一赛道针对城市规模的多摄像头车辆跟踪任务。在本文中,我们提出了一种精确的车辆跟踪系统,由4个部分组成,包括:(1)用于车辆检测和特征提取的最先进的检测和重新识别模型。(2)单摄像机跟踪,我们在检测跟踪范式之上引入增强轨迹预测和多级关联方法。(3)基于区域的单摄像机轨迹合并策略。(4)多摄像机时空匹配与聚类策略。该系统取得了可喜的成果,并以0.8437的IDF1分数在2022年人工智能城市挑战赛的第一场比赛中排名第二。

2025-07-06 14:21:46 989 1

原创 CU-Net --图像融合

CU-Net是一种基于多模态卷积稀疏编码(MCSC)模型的网络,旨在实现多模态图像恢复和融合任务。该网络由三个主要模块组成:独特特征提取模块(UFEM)、共同特征保存模块(CFPM)和图像重建模块(IRM)。UFEM通过卷积操作提取各模态图像的独特特征,CFPM则负责提取并保存不同模态图像间的共同特征,IRM利用这些特征进行图像重建。CU-Net的设计具有明确的理论依据和良好的可解释性,能够有效捕捉不同模态图像之间的全局相关性,且网络架构灵活,可根据任务需求调整。实验结果表明,CU-Net在多模态图像处理任

2025-05-13 14:22:53 907

原创 PIAFusion--图像融合

PIAFusion是一种基于光照感知的红外与可见光图像融合网络,旨在生成同时包含显著目标和丰富纹理细节的融合图像,尤其在极端光照条件下表现优异。传统融合方法常忽视光照变化的影响,导致白天细节丢失或夜间目标信息弱化。PIAFusion通过光照感知子网络估计光照条件,自适应地融合不同模态信息,保持热目标对比度和背景纹理。网络设计包括光照感知子网络、跨模态差分感知融合模块和中途融合策略,结合光照感知损失函数,确保融合图像在不同光照条件下均能保持最佳亮度和纹理。实验结果表明,PIAFusion在MFNet数据集上表

2025-05-13 14:18:20 961

原创 SD-Net,图像融合网络

SD-Net是一种用于实时图像融合的挤压分解网络,旨在处理多模态和数字摄影图像。该网络通过提取和重建图像的梯度与强度信息,设计了一个通用损失函数,以适应不同任务对纹理细节和强度分布的需求。SD-Net包含挤压网络和分解网络两部分,前者将源图像融合成单一图像,后者则分解融合图像以重建源图像。损失函数由压缩函数损失和分解一致损失组成,其中压缩函数损失包括梯度损失和强度损失,通过自适应决策块和比例设置策略优化融合图像的纹理和强度信息。实验表明,SD-Net在多种图像融合任务中表现优异,特别是在保留细节和强度信息方

2025-05-10 21:09:13 731

原创 【读论文】Balancing Task-invariant Interaction and Task-specific Adaptation for Unified

这篇论文主要讲了一种新的统一图像融合框架 TITA,目的是解决现有图像融合方法的一些问题,提升融合效果和模型泛化能力。

2025-04-16 21:04:17 773

原创 多目标追踪之Sort与DeepSort

简单在线实时跟踪 (SORT) 是一种实用的多对象跟踪方法,重点关注简单、有效的算法。在本文中,我们整合外观信息来提高排序的性能。由于这种扩展,我们能够通过更长的遮挡时间来跟踪对象,从而有效地减少身份切换的数量。本着原始框架的精神,我们将大部分计算复杂性放入离线预训练阶段,在该阶段我们在大规模人员重新识别数据集上学习深度关联度量。在在线应用过程中,我们使用视觉外观空间中的最近邻查询建立测量与跟踪关联。实验评估表明,我们的扩展将身份切换数量减少了 45%,在高帧速率下实现了整体竞争性能。

2025-01-07 19:12:33 857

原创 多目标跟踪MOT(Multiple Object Tracking)-----------------------所有你想要的都在里面

多目标跟踪(MOT,Multiple Object Tracking)是计算机视觉领域中的一个重要任务,旨在从视频流或一系列连续的图像中,跟踪多个目标物体并为每个目标分配一个唯一的身份(ID),同时在整个视频中保持一致性。MOT广泛应用于自动驾驶、视频监控、运动分析等领域,尤其在处理动态环境中的复杂场景时,面临着大量挑战,如目标遮挡、目标交叉、误检、丢失目标等。

2025-01-05 21:22:39 2161

原创 yolo v1 论文深度学习及问题解答

引言yolo 是2015年提出的关于目标检测的算法。YOLO系列的核心思想就是把目标检测转变为一个回归问题,利用整张图片作为网络的输入,通过神经网络,得到边界框的位置及其所属的类别。本文对每一个模块进行细致解读,并思考了一些问题。因为论文许多人都解读过,因此本文最精彩的部分在于本人对论文时候突发的一些思考,并给与解读,可能会对你h有帮助。Abstract就是说yolo是一个新的目标检测方式,然后介绍了以前的工作是在分类的基础上(两步走)完成目标检测。

2024-12-15 15:27:58 989

原创 VGG基础与实战

通过权值共享,模型可以在处理类似任务或者特征的情况下复用已学到的知识,对于如卷积神经网络(CNN)中的卷积层尤其常见,它们的滤波器(权重矩阵)可以沿时间或空间维度共享,有效地提取图像或序列数据的局部特征。- 两张图都展示了随着训练轮数(epoch)的增加,训练损失(train loss)、训练准确率(train acc)和测试准确率(test acc)的变化情况。),作者使用了带有3×3卷积核、填充为1(保持高度和宽度)的卷积层,和带有2×2汇聚窗口、步幅为2(每个块后的分辨率减半)的最大汇聚层。

2024-12-06 19:11:12 929

原创 RseNet论文与实战

2.构建ResNet,根据论文结构一步步构建。

2024-11-27 21:31:10 851

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除