CU-Net --图像融合

CU-Net

方法设计

论文提出 CU-Net 网络,基于多模态卷积稀疏编码(MCSC)模型,通过独特特征提取模块(UFEM)、共同特征保存模块(CFPM)和图像重建模块(IRM),分别提取源图像独特特征、保存共同特征并重建图像,实现多模态图像恢复和融合任务。

网络结构

在这里插入图片描述

输入
  • 模态 I 图像(x):作为待处理或恢复的图像数据,具有自身独特信息及与其他模态图像的共同信息。
  • 模态 II 图像(y,引导图像):为处理x提供辅助引导信息,在不同任务中作用方式有别。
独特特征提取模块(UFEM)
  • 组成:由{u**k}预测网络和{v**k}预测网络构成。
  • 原理:基于多模态卷积稀疏编码模型,在 MIR 或 MIF 任务中,不同模态图像既有共同特征也有独特特征。{u**k}预测网络针对模态 I 图像x ,通过一系列卷积操作(如Conv{aku} ),依据学习到的卷积稀疏编码(LCSC)算法迭代求解,提取x的独特特征u**k ;同理,{v**k}预测网络对模态 II 图像y ,经Conv{hkv}等操作,提取y的独特特征v**k ,分离出各模态图像独有的信息部分。
共同特征保存模块(CFPM)
  • 功能:负责提取并保存不同模态图像间的共同特征。
  • 实现过程:将处理后的xy(来自 UFEM 模块处理结果 )输入{c**k}预测网络,通过 LCSC 算法迭代优化,求解共同特征响应c**k ,再经Conv{gkc}卷积操作,得到可用于后续重建的共同特征表示,确保不同模态图像共有的结构、边缘等关键信息被保留。
图像重建模块(IRM)
  • MIR 任务重建:将 UFEM 模块中{u**k}预测网络经Conv{gku}处理后的输出,与 CFPM 模块中Conv{gkc}处理后的共同特征输出相加,即利用x的独特特征和xy的共同特征,重建目标图像z ,弥补x在恢复任务中的信息缺失。
  • MIF 任务重建:除上述两个分支外,增加{v**k}预测网络经Conv{gkv}处理后的输出分支 ,综合x的独特特征、y的独特特征以及二者共同特征,融合生成目标图像z ,实现多模态图像信息的有效整合。

在这里插入图片描述

损失函数

在已知所有字典(滤波器)情况下,通过求解优化问题

在这里插入图片描述

计算特征响应。采用交替更新策略,分三步交替更新(u_{k}) 、(v_{k}) 、(c_{k}) ,但直接求解计算量大,故提出用深度学习方法,将更新过程转化为深度网络模块 。见上图:

在这里插入图片描述

在这里插入图片描述

采用学习到的卷积稀疏编码(LCSC)算法求解,得到迭代公式,将迭代过程展开形成网络架构,(v_{k})预测网络设计类似。

在这里插入图片描述

1.固定共同特征响应ck和引导图像y的独特响应vk,更新输入图像x的独特响应uk.

2.同理更新y的独特响应vk.

3.固定所有uk,vk去更新ck。

实验结果

​ 从网络架构的设计角度,说明其是从多模态卷积稀疏编码(MCSC)模型推导而来,每个模块(独特特征提取模块 UFEM、共同特征保存模块 CFPM、图像重建模块 IRM)都有明确的理论依据,具有良好的可解释性。与传统基于图像块的稀疏编码方法相比,CU - Net 在图像级别上对跨模态依赖关系进行建模,能够更好地捕捉不同模态图像之间的全局相关性。此外,还会提到网络架构的灵活性,如 UFEM 和 CFPM 模块中基于学习到的卷积稀疏编码(LCSC)算法的迭代过程,可根据任务需求调整 LCSC 块数量,以适应不同的任务和数据特点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值