sqlalchemy query 统计匹配包含xxxx类型的数据

本文介绍了使用SQLAlchemy ORM进行数据库查询的各种高级技巧,包括条件过滤、通配符使用、限制查询结果数量、排序、分组及聚合函数应用、表连接等操作,并展示了如何通过组合查询提高查询灵活性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

匹配match_type 类型的数据格式:

session.query(Tablename).filter(Tablename.xxxx.like(‘%%%s_%%’ % match_type)

其他详细:

 条件

ret = session.query(Users).filter_by(name=’alex’).all()
ret = session.query(Users).filter(Users.id > 1, Users.name == ‘eric’).all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == ‘eric’).all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name=’eric’))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == ‘eric’)).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == ‘eric’)).all()
ret = session.query(Users).filter(
or_(
Users.id < 2,
and_(Users.name == ‘eric’, Users.id > 3),
Users.extra != “”
)).all()

通配符

ret = session.query(Users).filter(Users.name.like(‘e%’)).all()
ret = session.query(Users).filter(~Users.name.like(‘e%’)).all()

限制

ret = session.query(Users)[1:2]

排序

ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all()

分组

from sqlalchemy.sql import func

ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).all()

ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all()

连表

ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()

ret = session.query(Person).join(Favor).all()

ret = session.query(Person).join(Favor, isouter=True).all()

组合

q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all()

q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()

https://www.cnblogs.com/pycode/p/mysql-orm.html

### SQLAlchemy ORM 支持的数据类型 SQLAlchemy 提供了一系列内置的数据类型用于定义模型字段,这些数据类型可以映射到不同数据库引擎对应的原生类型。以下是常用的一些数据类型及其用法: #### 基本数据类型 - **Integer**: 整数类型。 ```python from sqlalchemy import Integer, Column id = Column(Integer, primary_key=True) ``` - **String(length)**: 字符串类型,需指定最大长度。 ```python name = Column(String(50)) ``` - **Text**: 长文本字符串,默认无长度限制。 ```python description = Column(Text()) ``` - **Boolean**: 布尔值类型。 ```python active = Column(Boolean(), default=True) ``` - **Float(precision, decimal_return_scale=None)** 和 **Numeric(precision, scale=0)**: 浮点数和定点数类型。 ```python price = Column(Numeric(10, 2)) # 定义精度为10位整数部分加两位小数部分的数值型列 rating = Column(Float()) # 存储浮点类型的评分 ``` #### 时间日期类型 - **Date**, **Time**, **DateTime** 这些类型分别表示日期、时间以及两者组合的形式。对于 `DateTime` 类型还可以设置默认时间为当前时间戳。 ```python created_at = Column(DateTime(timezone=True), server_default=text('NOW()')) updated_at = Column(DateTime(timezone=True), onupdate=datetime.now) ``` #### JSON/BLOB 数据类型 - **JSON/JSONB (PostgreSQL specific)**: PostgreSQL 中特有的 JSON 或者二进制 JSON 格式的存储方式。 ```python metadata_ = Column(JSON) # 使用下划线避免与 Python 关键字冲突 config_data = Column(JSONB) # 更高效的索引性能 ``` - **LargeBinary(size)**: 大容量二进制对象(如文件),可选参数 size 表示预期的最大尺寸。 ```python avatar_blob = Column(LargeBinary()) ``` 除了上述提到的基础类型外,SQLAlchemy 还提供了其他一些特殊用途的数据类型,比如枚举(Enum),数组(Array)[^1]等,在实际应用中可以根据需求灵活选用合适的类型来满足业务逻辑的要求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值