从用户日志到智能宏:我的BFS寻宝奇遇记(2014. 重复 K 次的最长子序列)


😎 从用户日志到智能宏:我的BFS寻宝奇遇记

大家好,我是一个在代码世界里摸爬滚打了N年的老兵。今天想和大家聊聊最近在项目中遇到的一个棘手问题,以及我是如何用一个看似“学院派”的算法——广度优先搜索(BFS)——漂亮地解决它的。这趟旅程有“踩坑”的窘迫,也有“恍然大悟”的喜悦,希望能给同在路上的你带来一些启发。

一、我遇到了什么问题?一个“善解人意”的功能

我所在的团队正在开发一款面向设计师的创意软件。为了提升用户体验,我们想加一个“智能宏推荐”功能。啥意思呢?就是软件在后台默默记录用户的操作流,比如一长串这样的记录:

s = "复制图层-粘贴图层-调整透明度-选择画笔-复制图层-粘贴图层-调整透明度-删除图层"

如果用户反复进行了某套固定的操作(比如 复制图层-粘贴图层-调整透明度 出现了两次),我们就弹出一个提示:“嗨,我们发现您经常进行这套操作,要不要为您创建一个一键宏?”

听起来很酷,对吧?但魔鬼藏在细节里。需求很快就明确了:

  1. 重复次数 (k):一个操作序列至少要重复 k 次(比如 k=2),我们才认为它是个“习惯”,值得推荐。
  2. 最长优先:如果 "复制-粘贴" 重复了3次,而 "复制-粘贴-调整" 重复了2次,我们显然应该推荐后者,因为它更具体,更有价值。所以,我们要找最长的那个操作序列。
  3. 字典序最大:万一,我是说万一,有两个最长的操作序列,比如 "选择A-应用B""选择C-应用D",长度一样,都重复了2次。我们总得有个标准来决定推荐哪个吧?产品经理一拍脑袋:“按字母表顺序,推荐那个看起来‘更大气’的!” —— 好了,这就是程序员黑话里的“字典序最大”。

这不就是 LeetCode 上的那道题吗!

2014. 重复 K 次的最长子序列
给你一个字符串 s 和一个整数 k 。返回 s 中最长重复 k 次的子序列。如果存在多个答案,则返回字典序最大的那一个。如果不存在这样的子序列,则返回一个空字符串。

我的任务,就是写出这个推荐引擎的核心 findBestMacro(s, k) 函数。

二、踩坑实录:贪心的诱惑与陷阱

一开始,我的思路非常直接:贪心

“要想字典序最大,我每一步都选当前能选的、字典序最大的字符,不就行了?”

这个想法太诱人了,就像沙漠里看到了绿洲。我的贪心策略是这样的:

  1. 从一个空字符串 result 开始。
  2. 循环尝试从 'z''a' 添加字符到 result 后面。
  3. 每尝试一个新字符 c,就生成一个新的候选 newResult = result + c
  4. 检查这个 newResult 是否仍然满足“重复 k 次是 s 的子序列”。
  5. 如果满足,太棒了!我立刻接受这个选择,将 result 更新为 newResult,然后马上开始下一轮的添加。

我兴冲冲地写了代码,拿 s = "letsleetcode", k = 2 测试。

  • 第1步:尝试加 't' (因为在 e,l,tt 最大)。"t" 重复2次是 "tt",是 s 的子序列。成功!当前结果 result = "t"
  • 第2步:在 "t" 后面加字符。尝试加 'e',得到 "te""te" 重复2次是 "tete",也是 s 的子序列。成功!当前结果 result = "te"
  • 第3步:在 "te" 后面加字符。尝试遍了,"tet", "tel", "tee" 都不行了。

最终输出: "te"

我把结果给测试一看,他甩给我一个预期结果:"let"
"let" 重复两次是 "letlet",确实是 s (letsletcode) 的子序列,而且长度为3,比我的 "te" (长度2) 要长!

我当场石化… 🗿

恍然大悟的瞬间

贪心算法在这里彻底失败了。因为它只顾眼前利益(每一步都选字典序最大的),导致它早早地走上了一条 “看起来很美” 的死胡同('t' 开头的路)。它为了抓住 't' 这个局部最优解,放弃了 'l' 开头的、更有潜力的路径,最终错过了全局最优解 "let"

结论:此路不通! 我们需要一个能系统性地探索所有可能性,而不会被局部最优解“带偏”的办法。

三、柳暗花明:用广度优先搜索(BFS)进行地毯式寻宝

这时候,我的脑海里冒出了一个词:广度优先搜索(BFS)

BFS 就像一个极其严谨的寻宝队。它不会一头扎进一个山洞就走到黑,而是先把离入口距离为1的所有地方都探一遍,再把距离为2的所有地方探一遍… 这样下去,它找到宝藏时,一定能保证这条路径是最短的。

在这里,我们稍微变通一下:

  • 我们的“宝藏”是最长的序列。
  • 我们的“地图”是一个由所有可能的子序列构成的“隐式图”。

BFS 策略如下:

  1. 初始化:创建一个队列,把一个空字符串 "" 放进去,作为我们搜索的起点。
  2. 层层推进
    • 从队列里取出一个序列 curr
    • 尝试在 curr 后面追加每一个可能的字符 c,形成新的序列 next = curr + c
    • 对于每个 next,我们用一个“验证器”函数 isKRepeatedSubsequence 检查它是否合法(即重复k次后仍是 s 的子序列)。
    • 如果合法,就把 next 加入队列,供下一轮探索,并更新我们的最终答案。
  3. 保证最长:因为 BFS 是按长度一层一层探索的(空串 -> 长度1 -> 长度2 …),所以当我们探索完某一层后,得到的答案就一定是当前能达到的最长答案。
  4. 保证字典序最大:这是一个锦上添花的操作!在尝试追加字符时,我们'z''a' 倒序追加。这样,同一长度的合法序列中,字典序大的会先被我们发现并记录下来。由于 BFS 的特性,最后一个被记录下来的答案,一定是最长的序列中,字典序最大的那一个

这套组合拳,完美解决了“最长”和“字典序最大”两个核心矛盾。🚀

四、核心代码与方法详解

下面就是我们 BFS 寻宝之旅的最终代码,我加了详细的注释,就像在和你结对编程一样。

import java.util.*;

class Solution {
    public String longestSubsequenceRepeatedK(String s, int k) {
        // 最终答案,初始化为空字符串
        String ans = ""; 
        // BFS 核心:队列,存储待检查的候选序列
        Queue<String> queue = new LinkedList<>();
        // 我们的寻宝之旅从一个空的地方(空字符串)开始
        queue.offer("");

        // 1. 预处理:找出“热门”字符
        // 只有在 s 中出现次数 >= k 的字符,才有可能构成答案的一部分
        int[] freq = new int[26];
        for (char c : s.toCharArray()) {
            freq[c - 'a']++;
        }
        StringBuilder possibleChars = new StringBuilder();
        for (int i = 0; i < 26; i++) {
            if (freq[i] >= k) {
                possibleChars.append((char) ('a' + i));
            }
        }
        String candidates = possibleChars.toString();

        // 2. BFS 主循环
        while (!queue.isEmpty()) {
            // 取出当前层的候选序列
            String current = queue.poll();

            // 3. 尝试扩展:从 'z' 到 'a' 倒序尝试
            // 为了满足“字典序最大”的要求,我们优先尝试更大的字符
            for (int i = candidates.length() - 1; i >= 0; i--) {
                char c = candidates.charAt(i);
                String next = current + c;
              
                // 4. 验证新序列的合法性
                if (isKRepeatedSubsequence(next, s, k)) {
                    // 如果合法,它就是一个更好的答案(因为更长,或者一样长但字典序更大)
                    ans = next; 
                    // 把它加入队列,作为下一轮探索的基础
                    queue.offer(next);
                }
            }
        }
        return ans;
    }

    /**
     * 验证器:检查 seq 重复 k 次后,是否是 s 的子序列
     * 这是我们整个算法的基石,也是性能关键点
     * @param seq 候选序列 (e.g., "let")
     * @param s   原始字符串 (e.g., "letsleetcode")
     * @param k   重复次数 (e.g., 2)
     * @return true 如果 "letlet" 是 "letsleetcode" 的子序列
     */
    private boolean isKRepeatedSubsequence(String seq, String s, int k) {
        // 边界情况:空序列永远是合法的
        if (seq.isEmpty()) {
            return true;
        }
        // 剪枝优化:如果目标长度超过原串,直接返回 false
        if (seq.length() * k > s.length()) {
            return false;
        }
      
        // 构造目标串,比如 seq="let", k=2 -> target="letlet"
        StringBuilder targetBuilder = new StringBuilder();
        for (int i = 0; i < k; i++) {
            targetBuilder.append(seq);
        }
        String target = targetBuilder.toString();
      
        // 双指针法判断子序列
        int i = 0; // 指向 target
        int j = 0; // 指向 s
        while (i < target.length() && j < s.length()) {
            // 在 s 中找到了 target 当前需要的字符
            if (target.charAt(i) == s.charAt(j)) {
                i++; // 匹配下一个 target 字符
            }
            j++; // 无论如何,s 的指针都要前进
        }
      
        // 如果 i 走完了整个 target,说明匹配成功
        return i == target.length();
    }
}

isKRepeatedSubsequence 函数详解
这个函数是我们的“真伪鉴定师”。它使用经典的双指针技巧。想象一下,你拿着目标序列 target 的清单,在原始字符串 s 上从头走到尾。

  • i 指针是你清单上需要打勾的下一个物品。
  • j 指针是你正在 s 这条商业街上检查的店铺。
  • 如果 s[j] 就是你想要的 target[i],太好了!i 指针前进,准备找下一个物品。
  • 不管找没找到,你都得继续逛下一家店,所以 j 指针永远在前进。
  • 最后,如果你清单上的所有物品都打上了勾(i 走到了尽头),那么你就成功了!
五、官方提示解读(像不像在解谜?)
  • n == s.length
  • 2 <= k <= 2000
  • 2 <= n < k * 8
  • s 由小写英文字母组成

其中 n < k * 8至关重要的突破口。我们来分析一下: 假设我们找到了答案 seq,其长度为 L。那么 seq*k 的长度就是 L * k。 因为 seq*ks 的子序列,所以 seq*k 的长度必然小于等于 s 的长度 n。 即 L * k <= n。 由这个不等式,我们可以推导出 L <= n / k。 再结合题目给的提示 n < k * 8,我们可以得到 n / k < 8。 所以,L < 8。 这意味着我们要找的 最长子序列 seq 的长度最多是 7

恍然大悟 🤯:这个看似困难的问题,其解的空间被这个提示极大地压缩了。我们不需要在庞大的 s 上做什么复杂的动态规划,而是应该去 搜索 那个长度不超过7的答案 seq 本身。

我们的搜索策略应该遵循题目的双重标准:

  1. 最长优先:我们应该先尝试寻找长度为7的解,再尝试长度为6的,以此类推。
  2. 字典序最大优先:在同一长度下,我们应该先尝试字典序大的组合,比如先试 “z”,再试 “y”;先试 “za”,再试 “yz”。

综合起来,我们的目标是构建一个最长、字典序最大的 seq

六、举一反三:BFS 的更多应用场景

掌握了这种“BFS+状态生成”的思维模型后,你会发现它能解决很多问题:

  1. 最短路径问题
    • 走迷宫:从起点到终点的最短步数。
    • Word Ladder (单词接龙):从一个单词变成另一个单词,每次只改一个字母,求最短的转换序列。
  2. 最小操作次数问题
  3. 状态生成与搜索
    • 代码补全/推荐系统:就像我们今天的例子,基于前文生成最有可能的后续代码或商品。
    • 基因序列分析:在巨大的基因串中,寻找符合某种复杂模式(如回文、重复)的最长/最短的有效片段。
结尾

从一个实际的产品需求,到一个错误的贪心尝试,再到最终通过 BFS 找到优雅的解决方案,这个过程不仅仅是写出几行代码那么简单。它体现了算法思维如何帮助我们剖析问题、识别陷阱,并选择最合适的工具来构建健壮、高效的系统。

希望我的这次“寻宝”经历能对你有所帮助。记住,当遇到需要找到“最优”路径或组合的问题时,别忘了你的工具箱里还有 BFS 这个强大而可靠的朋友!😉

祝大家编码愉快,少踩坑,多“Aha!”!🚀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值