1.题目链接:
假如有一排房子,共 n 个,每个房子可以被粉刷成红色、蓝色或者绿色这三种颜色中的一种,你需要粉刷所有的房子并且使其相邻的两个房子颜色不能相同。
当然,因为市场上不同颜色油漆的价格不同,所以房子粉刷成不同颜色的花费成本也是不同的。每个房子粉刷成不同颜色的花费是以一个 n x 3 的正整数矩阵 costs 来表示的。
例如,costs[0][0] 表示第 0 号房子粉刷成红色的成本花费;costs[1][2] 表示第 1 号房子粉刷成绿色的花费,以此类推。
请计算出粉刷完所有房子最少的花费成本。
示例 1:
输入: costs = [[17,2,17],[16,16,5],[14,3,19]]
输出: 10
解释: 将 0 号房子粉刷成蓝色,1 号房子粉刷成绿色,2 号房子粉刷成蓝色。
最少花费: 2 + 5 + 3 = 10。
示例 2:
输入: costs = [[7,6,2]]
输出: 2
提示:
costs.length == n
costs[i].length == 3
1 <= n <= 100
1 <= costs[i][j] <= 20
3. 解法(动态规划):
算法思路:
1. 状态表示:
对于线性 dp ,我们可以用「经验 + 题目要求」来定义状态表示:
i. | 以某个位置为结尾,巴拉巴拉; |
ii. 以某个位置为起点,巴拉巴拉。
这里我们选择比较常用的方式,以某个位置为结尾,结合题目要求,定义一个状态表示:但是我们这个题在 i 位置的时候,会面临「红」「蓝」「绿」三种抉择,所依赖的状态需要细分:
dp[i][0] 表示:粉刷到 i 位置的时候,最后一个位置粉刷上「红色」,此时的最小花 | |
▪ | |
费;
dp[i][1] 表示:粉刷到 i 位置的时候,最后一个位置粉刷上「蓝色」,此时的最小花 | |
▪ | |
费;
dp[i][2] 表示:粉刷到 i 位置的时候,最后一个位置粉刷上「绿色」,此时的最小花 | |
▪ | |
费。
2. 状态转移方程:
因为状态表示定义了三个,因此我们的状态转移方程也要分析三个:
对于 dp[i][0] :
▪ | 如果第 i 个位置粉刷上「红色」,那么 i - 1 位置上可以是「蓝色」或者「绿色」。因此我们 |
需要知道粉刷到 i - 1 位置上的时候,粉刷上「蓝色」或者「绿色」的最小花费,然后加上 i
位置的花费即可。于是状态转移方程为:dp[i][0] = min(dp[i - 1][1], dp[i
- 1][2]) + costs[i - 1][0] ; |
同理,我们可以推导出另外两个状态转移方程为:
dp[i][1] = min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1] ;
dp[i][2] = min(dp[i - 1][0], dp[i - 1][1]) + costs[i - 1][2] 。
3. 初始化:
可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:
i. 辅助结点里面的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,添加一个节点,并且初始化为 0 即可。
4. 填表顺序
根据「状态转移方程」得「从左往右,三个表一起填」。
5. 返回值
根据「状态表示」,应该返回最后一个位置粉刷上三种颜色情况下的最小值,因此需要返回:
min(dp[n][0], min(dp[n][1], dp[n][2])) 。
Java算法代码:
class Solution {
public int minCost(int[][] costs) {
// 1.创建dp表
// 2.初始化
// 3.填表
// 4.返回结果
int n = costs.length;
int[][] dp = new int[n+1][3];
for(int i = 1; i <= n; i++){
dp[i][0] = Math.min(dp[i - 1][1], dp[i - 1][2]) + costs[i - 1][0];
dp[i][1] = Math.min(dp[i - 1][0], dp[i - 1][2]) + costs[i - 1][1];
dp[i][2] = Math.min(dp[i - 1][0], dp[i - 1][1]) + costs[i - 1][2];
}
return Math.min(dp[n][0], Math.min(dp[n][1], dp[n][2]));
}
}
运行结果:
动态规划: