1.题目链接:
309. 买卖股票的最佳时机含冷冻期 - 力扣(LeetCode)
2.题目描述:
给定一个整数数组prices,其中第 prices[i] 表示第 i 天的股票价格 。
设计一个算法计算出最大利润。在满足以下约束条件下,你可以尽可能地完成更多的交易(多次买卖 一支股票):
• 卖出股票后,你无法在第二天买入股票 (即冷冻期为 1 天)。
注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
示例 1:
输入: prices = [1,2,3,0,2]
输出: 3
解释:
对应的交易状态为: [买入, 卖出, 冷冻期, 买入, 卖出]示例 2:
输入: prices = [1]
输出: 0
3. 解法(动态规划):
算法思路:
1. 状态表示:
对于线性 dp ,我们可以用「经验 + 题目要求」来定义状态表示:
i. | 以某个位置为结尾,巴拉巴拉; |
ii. 以某个位置为起点,巴拉巴拉。
这里我们选择比较常用的方式,以某个位置为结尾,结合题目要求,定义一个状态表示:由于有「买入」「可交易」「冷冻期」三个状态,因此我们可以选择用三个数组,其中:
dp[i][0] 表示:第 i 天结束后,处于「买入」状态,此时的最大利润;dp[i][1] 表示:第 i 天结束后,处于「可交易」状态,此时的最大利润;dp[i][2] 表示:第 i 天结束后,处于「冷冻期」状态,此时的最大利润。 | |
▪ | |
▪ | |
▪ | |
2. 状态转移方程:
我们要谨记规则:
i. 处于「买入」状态的时候,我们现在有股票,此时不能买股票,只能继续持有股票,或者卖 出股票;
ii. 处于「卖出」状态的时候:
• | 如果「在冷冻期」,不能买入; | |||
• | 如果「不在冷冻期」,才能买入。 | |||
对于 dp[i][0] ,我们有「两种情况」能到达这个状态: | ||||
◦ | ||||
i. | 在 i - 1 天持有股票,此时最大收益应该和 i - 1 天的保持一致:dp[i - 1] | |||
ii. 在 i 天买入股票,那我们应该选择 i - 1 天不在冷冻期的时候买入,由于买入需要花[0] ; | ||||
钱,所以此时最大收益为:dp[i - 1][1] - prices[i]
两种情况应取最大值,因此:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]) 。
对于 dp[i][1] ,我们有「两种情况」能到达这个状态: | ||
◦ | ||
i. | 在 i - 1 天的时候,已经处于冷冻期,然后啥也不干到第 i 天,此时对应的状态为: |
dp[i - 1][2] ;
ii. 在 i - 1 天的时候,手上没有股票,也不在冷冻期,但是依旧啥也不干到第 i 天,此时 对应的状态为 dp[i - 1][1] ;
两种情况应取最大值,因此:dp[i][1] = max(dp[i - 1][1], dp[i - 1][2]) 。
◦ | 对于 dp[1][i] ,我们只有「一种情况」能到达这个状态: | |
i. | 在 i - 1 天的时候,卖出股票。 | |
因此对应的状态转移为:dp[i][2] = dp[i - 1][0] + prices[i] 。
3. 初始化:
三种状态都会用到前一个位置的值,因此需要初始化每一行的第一个位置:
dp[0][0] :此时要想处于「买入」状态,必须把第一天的股票买了,因此 dp[0][0] = -prices[0] ;
dp[0][1] :啥也不用干即可,因此 dp[0][1] = 0 ;
dp[0][2] :手上没有股票,买一下卖一下就处于冷冻期,此时收益为 0 ,因此dp[0][2] = 0 。
4. 填表顺序:
根据「状态表示」,我们要三个表一起填,每一个表「从左往右」。
5. 返回值:
应该返回「卖出状态」下的最大值,因此应该返回 max(dp[n - 1][1], dp[n - 1] [2]) 。
Java算法代码:
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][3];
dp[0][0] = -prices[0];
for(int i = 1; i < n; i++){
dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);
dp[i][1] = Math.max(dp[i - 1][1], dp[i - 1][2]);
dp[i][2] = dp[i - 1][0] + prices[i];
}
return Math.max(dp[n - 1][1], dp[n - 1][2]);
}
}
运行结果:
动态规划: