18.买卖股票的最佳时机Ⅳ(hard)

1.题目链接:

https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/description/https://leetcode.cn/problems/best-time-to-buy-and-sell-stock-iv/description/

2.题目描述:

    给定一个整数数组 prices ,它的第 i 个元素 prices[i] 是一支给定的股票在第 i 天的价格。​       设计一个算法来计算你所能获取的最大利润。你最多可以完成 k 笔交易。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

示例 1:​
输入:k = 2, prices = [2,4,1]​
输出:2​
解释:
在第 1 天 (股票价格 = 2) 的时候买入,在第 2 天 (股票价格 = 4) 的时候卖出,这笔交易所能获得利润 = 4-2 = 2 。​
示例 2:​
输入:k = 2, prices = [3,2,6,5,0,3]​
输出:7​
解释:
在第 2 天 (股票价格 = 2) 的时候买入,在第 3 天 (股票价格 = 6) 的时候卖出, 这笔交易所能获得利润 = 6-2 = 4 。​

随后,在第 5 天 (股票价格 = 0) 的时候买入,在第 6 天 (股票价格 = 3) 的时候卖出, 这笔交易所能

获得利润 = 3-0 = 3 。​

3. 解法(动态规划):

算法思路:

1. 状态表示:

为了更加清晰的区分「买入」和「卖出」,我们换成「有股票」和「无股票」两个状态。

f[i][j]  表示:第 i  天结束后,完成了 j  笔交易,此时处于「有股票」状态的最大收益;​

g[i][j]  表示:第 i  天结束后,完成了 j  笔交易,此时处于「无股票」状态的最大收益。​

2. 状态转移方程:

对于 f [i][j] ,我们也有两种情况能在第 i  天结束之后,完成 j  笔交易,此时手里「有股

票」的状态:

i.

i - 1  天的时候,手里「有股票」,并且交易了 j  次。在第 i 天的时候,啥也不干。

此时的收益为 f[i - 1][j] ;​

ii.i - 1  天的时候,手里「没有股票」,并且交易了 j  次。在第 i  天的时候,买了股票。那么 i  天结束之后,我们就有股票了。此时的收益为 g[i - 1][j] -
prices[i]

上述两种情况,我们需要的是「最大值」,因此 f 的状态转移方程为:​

f[i][j] = max(f[i - 1][j], g[i - 1][j] - prices[i])

对于 g [i][j] ,我们有下面两种情况能在第 i  天结束之后,完成 j  笔交易,此时手里「没有

股票」的状态:

i.

i - 1  天的时候,手里「没有股票」,并且交易了 j  次。在第 i 天的时候,啥也不

干。此时的收益为 g[i - 1][j] ;​

ii.i - 1  天的时候,手里「有股票」,并且交易了 j - 1  次。在第 i  天的时候,把股票卖了。那么 i  天结束之后,我们就交易了 j  次。此时的收益为 f[i - 1][j - 1] + prices[i]

上述两种情况,我们需要的是「最大值」,因此 g  的状态转移方程为:​

g[i][j] = max(g[i - 1][j], f[i - 1][j - 1] + prices[i])

3. 初始化:

由于需要用到 i = 0  时的状态,因此我们初始化第一行即可。​

当处于第 0  天的时候,只能处于「买入过一次」的状态,此时的收益为 -prices[0] ,因

f[0][0] = - prices[0] 。​

为了取 max  的时候,一些不存在的状态「起不到干扰」的作用,我们统统将它们初始化为 -

INF (用 INT_MIN 在计算过程中会有「溢出」的风险,这里 INF  折半取

0x3f3f3f3f ,足够小即可)

4. 填表顺序:

从上往下填每一行,每一行从左往右,两个表一起填。

5. 返回值:

返回处于卖出状态的最大值,但是我们也不知道是交易了几次,因此返回 g  表最后一行的最大

值。

优化点:

我们的交易次数是不会超过整个天数的一半的,因此我们可以先把 k  处理一下,优化一下问题的规

模:

k = min(k, n / 2)

Java算法代码:

class Solution {
    public int maxProfit(int k, int[] prices) {
        // 1.预处理
        int n = prices.length, INF = 0x3f3f3f3f;
        k = Math.min(k,n/2);

        int [][] f  = new int[n][k+1];
        int [][] g  = new int[n][k+1];
        // 初始化
        for(int j = 0; j <= k; j++){
            f[0][j] = g[0][j] = -INF;
        }
        f[0][0] = -prices[0];
        g[0][0] = 0;

        for(int i = 1; i < n; i++){
            for(int j = 0; j <= k; j++){
                f[i][j] = Math.max(f[i-1][j],g[i-1][j] - prices[i]);
                g[i][j] = g[i - 1][j];
                if(j >= 1){
                    g[i][j] = Math.max(g[i][j],f[i-1][j-1] + prices[i]);
                }
            }
        }
        int ret = 0;
        for(int j = 0; j <= k; j++){
            ret = Math.max(ret,g[n-1][j]);
        }
        return ret;
    }
}

执行结果:

动态规划:

这里是上一个题的延申。思路是一摸一样的。只是长度变化。唯一的不同算是,判断合理性.来进行次数的优化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值