1.题目链接:
给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素), 返回其最大和。
子数组 是数组中的一个连续部分。
示例 1:
输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:
连续子数组 [4,-1,2,1] 的和最大,为 6 。
示例 2:
输入:nums = [1]
输出:1
示例 3:
输入:nums = [5,4,-1,7,8]
输出:23
3. 解法(动态规划):
算法思路:
1. 状态表示:
对于线性 dp ,我们可以用「经验 + 题目要求」来定义状态表示:
i. | 以某个位置为结尾,巴拉巴拉; |
ii. 以某个位置为起点,巴拉巴拉。
这里我们选择比较常用的方式,以「某个位置为结尾」,结合「题目要求」,定义一个状态表示:dp[i] 表示:以 i 位置元素为结尾的「所有子数组」中和的最大和。
2. 状态转移方程:
dp[i] 的所有可能可以分为以下两种:
i. | 子数组的长度为 1 :此时 dp[i] = nums[i] ; |
ii. 子数组的长度大于 1 :此时 dp[i] 应该等于 以 i - 1 做结尾的「所有子数组」中和 的最大值再加上 nums[i] ,也就是 dp[i - 1] + nums[i] 。
由于我们要的是「最大值」,因此应该是两种情况下的最大值,因此可得转移方程:
dp[i] = max(nums[i], dp[i - 1] + nums[i]) 。
3. 初始化:
可以在最前面加上一个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点: i. 辅助结点里面的值要「保证后续填表是正确的」;
ii. 「下标的映射关系」。
在本题中,最前面加上一个格子,并且让 dp[0] = 0 即可。
4. 填表顺序:
根据「状态转移方程」易得,填表顺序为「从左往右」。
5. 返回值:
状态表示为「以 i 为结尾的所有子数组」的最大值,但是最大子数组和的结尾我们是不确定的。
因此我们需要返回整个 dp 表中的最大值。
Java算法代码:
class Solution {
public int maxSubArray(int[] nums) {
// 1.创建dp表
// 2.初始化
// 3.填表
// 4.返回结果
int n = nums.length;
int[] dp = new int[n +1];
int ret =Integer.MIN_VALUE;
for(int i =1; i <= n; i++){
dp[i] = Math.max(nums[i-1],dp[i-1] + nums[i-1]);
ret = Math.max(ret,dp[i]);
}
return ret;
}
}
执行结果:
动态规划: